Background: We previously demonstrated that bariatric surgery (BS) leads to a short-term significant improvement of endothelial function and coronary microvascular function. In this study we assessed whether BS maintains its beneficial effect at long-term follow up.

Design: We studied 19 morbidly obese patients (age 43±9years, 12 women) without any evidence of cardiovascular disease who underwent BS. Patients were studied before BS, at 3 months and at 4.0±1.5years follow up.

Methods: Peripheral vascular function was assessed by flow-mediated dilation (FMD) and nitrate-mediated dilation (NMD), i.e., brachial artery diameter changes in response to post-ischemic forearm hyperhaemia and to nitroglycerin administration, respectively. Coronary microvascular function was assessed by measuring coronary blood flow (CBF) response to intravenous adenosine and to cold pressor test (CPT) in the left anterior descending coronary artery.

Results: Together with improvement of anthropometric and metabolic profile, at long-term follow-up patients showed a significant improvement of FMD (6.43±2.88 vs. 8.21±1.73%, p=0.018), and CBF response to both adenosine (1.73±0.48 vs. 2.58±0.54; p<0.01) and CPT (1.43±0.30 vs. 2.23±0.48; p<0.01), compared to basal values. No differences in vascular end-points were shown at 3-month and 4-year follow-up after BS.

Conclusions: Our data show that, in morbidly obese patients, BS exerts beneficial and long lasting effects on peripheral endothelial function and on coronary microvascular dilator function.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.orcp.2016.12.005DOI Listing

Publication Analysis

Top Keywords

coronary microvascular
12
microvascular function
12
bariatric surgery
8
endothelial function
8
function coronary
8
function assessed
8
cbf response
8
function
6
coronary
5
long-term effects
4

Similar Publications

Contemporary therapies following heart failure center on regenerative approaches to account for the loss of cardiomyocytes and limited regenerative capacity of the adult heart. While the delivery of cardiac progenitor cells has been shown to improve cardiac function and repair following injury, recent evidence has suggested that their paracrine effects (or secretome) provides a significant contribution towards modulating regeneration, rather than the progenitor cells intrinsically. The direct delivery of secretory biomolecules, however, remains a challenge due to their lack of stability and tissue retention, limiting their prolonged therapeutic efficacy.

View Article and Find Full Text PDF

Bidirectional interplay of sleep apnea syndrome and cardio-vascular disorders in diabetes.

Diabetes Res Clin Pract

January 2025

Department of Endocrinology-Diabetology-Nutrition, Jean Verdier Hospital, APHP, CINFO, Bondy, France. Electronic address:

Although often overlooked sleep apnea has emerged as a significant public health concern. Obstructive sleep apnea (OSA) and diabetes commonly co-exist with a vicious cycle worsening the incidence and severity of both conditions. OSA has many implications including cardiometabolic disorders and impaired cardiovascular (CV) prognosis.

View Article and Find Full Text PDF

Background: Coronary air embolism is a rare but severe complication of coronary interventions.

Case Presentation: We present a case of a massive air embolism in the right coronary artery during percutaneous coronary intervention, resulting in ventricular fibrillation. The patient was successfully resuscitated with electric defibrillation, leading to full recovery and TIMI 3 coronary flow.

View Article and Find Full Text PDF

Objectives: Shear-wave elastography (SWE) provides valuable stiffness within breast masses, making it a useful supplement to conventional ultrasound imaging. Super-resolution ultrasound (SRUS) imaging enhances microvascular visualization, aiding in the differential diagnosis of breast masses. Current clinical ultrasound diagnosis of breast cancer primarily relies on gray-scale ultrasound.

View Article and Find Full Text PDF

Coronary microvascular dysfunction (CMD) is a clinical syndrome of myocardial ischemia caused by structural and/or functional abnormalities of pre-coronary arterioles and arterioles. While genetics and other factors play a role in CMD etiology, the key pathogenic mechanism remains unclear. Currently, the diagnostic procedure for CMD is still cumbersome, and there is a lack of effective targeted interventions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!