Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Biuret (CHNO) has been studied to 30 GPa by Raman spectroscopy and 50 GPa by X-ray diffraction. Raman peaks exhibit shoulders and splitting that suggests that the molecules undergo reorientation in response to compression. These are observed in three pressure ranges: the first from 3-5 GPa, the second from 8-12 GPa, and finally from 16-20 GPa. The particular modes in the sample that are observed to change in the Raman are strongly linked to the molecular vibrations involving the N-H and the C═O bond, which are most strongly coupled to the hydrogen-bonded lattice structure. The X-ray diffraction suggests that the crystal maintains a monoclinic structure to the highest pressures studied. Although there was a considerable degree of hysteresis observed in some X-ray runs, all the changes observed under pressure are reversible.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.6b09670 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!