Transcriptome profiling of sweetpotato tuberous roots during low temperature storage.

Plant Physiol Biochem

Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, 34141, South Korea; Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Daejeon, 34113, South Korea. Electronic address:

Published: March 2017

Sweetpotato [Ipomoea batatas (L.) Lam] is a globally important root crop with high industrial value. However, because sweetpotato tuberous roots undergo chilling injuries that negatively affect their quality at temperatures below 10 °C, postharvest damage during the winter season is a major constraint for industrialization. To understand chilling injury response during postharvest low temperature storage, we used next-generation sequencing technology to comprehensive analyze the transcriptome of tuberous roots stored at optimal (13 °C) or low temperature (4 °C) for 6 weeks. From nine cDNA libraries, we produced 298,765,564 clean reads, which were de novo assembled into 58,392 unigenes with an average length of 1100 bp. A total of 3216 differentially expressed genes (DEGs) were detected and categorized into six clusters, of which clusters 2, 4, and 5 (1464 DEGs) were up-regulated under low temperature. The genes in these three clusters are involved in biosynthesis of unsaturated fatty acids, pathogen defense, and phenylalanine metabolism. By contrast, genes in clusters 1, 3, and 6 (1752 DEGs), which were generally down-regulated at low temperature, encode antioxidant enzymes or are involved in glycerophospholipid, carbohydrate, or energy metabolism. We confirmed the results of the transcriptome analysis by quantitative RT-PCR. Our transcriptome analysis will advance our understanding of the comprehensive mechanisms of chilling injury during low temperature storage and facilitate improvements in postharvest storage of sweetpotato tuberous roots.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2016.12.021DOI Listing

Publication Analysis

Top Keywords

low temperature
24
tuberous roots
16
sweetpotato tuberous
12
temperature storage
12
storage sweetpotato
8
chilling injury
8
transcriptome analysis
8
low
6
temperature
6
transcriptome
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!