Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This paper addresses the problem of state estimation for a class of discrete-time stochastic complex networks with a constrained and randomly varying coupling and uncertain measurements. The randomly varying coupling is governed by a Markov chain, and the capacity constraint is handled by introducing a logarithmic quantizer. The uncertainty of measurements is modeled by a multiplicative noise. An asynchronous estimator is designed to overcome the difficulty that each node cannot access to the coupling information, and an augmented estimation error system is obtained using the Kronecker product. Sufficient conditions are established, which guarantee that the estimation error system is stochastically stable and achieves the strict (Q, S, R)-γ-dissipativity. Then, the estimator gains are derived using the linear matrix inequality method. Finally, a numerical example is provided to illustrate the effectiveness of the proposed new design techniques.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNNLS.2015.2503772 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!