Phosphodiesterase-2A (PDE2A) is a potential therapeutic target for treatment of Alzheimer's disease and pulmonary hypertension. However, most of the current PDE2A inhibitors have moderate selectivity over other PDEs. In the present study, we described the discovery of novel PDE2A inhibitors by structure-based virtual screening combining pharmacophore model screening, molecular docking, molecular dynamics simulations, and bioassay validation. Nine hits out of 30 molecules from the SPECS database (a hit rate of 30%) inhibited PDE2A with affinity less than 50 μM. Optimization of compound AQ-390/10779040 (IC = 4.6 μM) from the virtual screening, which holds a novel scaffold of benzo[cd]indol-2(1H)-one among PDE inhibitors, leads to discovery of a new compound LHB-8 with a significant improvement of inhibition (IC = 570 nM). The modeling studies demonstrated that LHB-8 formed an extra hydrogen bond with Asp808 and a hydrophobic interaction with Thr768, in addition to the common interactions with Gln859 and Phe862 of PDE2A. The novel scaffolds discovered in the present study can be used for rational design of PDE2A inhibitors with high affinity.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jcim.6b00551DOI Listing

Publication Analysis

Top Keywords

virtual screening
12
pde2a inhibitors
12
discovery novel
8
inhibitors structure-based
8
structure-based virtual
8
pde2a
6
inhibitors
5
novel phosphodiesterase-2a
4
phosphodiesterase-2a inhibitors
4
screening
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!