Some bacteria produce and perceive quorum-sensing (QS) signals that coordinate several behaviours, including the costly processes that are exoenzyme production and plasmid transfer. In the case of plasmid transfer, the emergence of QS signal-altered invaders and their policing are poorly documented. In Agrobacterium tumefaciens, the virulence Ti-plasmid encodes both synthesis and sensing of QS-signals, which promote its transfer from a donor to a recipient cell. Here, we reported that QS-altered A. tumefaciens mutants arose during experimental evolution. All showed improved growth compared to their ancestor. Genome sequencing revealed that, though some had lost the Ti-plasmid, most were defective for QS-signal synthesis and Ti-plasmid conjugation (traR mutations) and one exhibited a QS-signal exploitation behaviour, using signal produced by other cells to enhance its own Ti-plasmid transfer. We explored mechanisms that can limit this QS-hijacking. We showed that the A. tumefaciens capacity to inactivate QS-signals by expressing QS-degrading enzyme could attenuate dissemination of the QS signal-negative Ti-plasmids. This work shows that enzymatic QS-disruption whether encoded by the QS-producing Ti-plasmid itself, by a companion plasmid in the same donor cells, or by one in the recipient cells, in all cases can serve as a mechanism for controlling QS exploitation by QS signal-negative mutants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5215187 | PMC |
http://dx.doi.org/10.1038/srep40126 | DOI Listing |
Front Cell Neurosci
May 2022
Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada.
Reward exploitation and aversion are mediated in part by the locus coeruleus (LC), a brainstem structure significantly involved in learning and memory via the release of norepinephrine. Different LC firing patterns are associated with different functions. Previously, we have shown that high tonic and phasic LC activation signal negative and positive valence, respectively, via basolateral amygdala (BLA) circuitry.
View Article and Find Full Text PDFSci Rep
January 2017
Institute for Integrative Biology of the Cell (I2BC), CNRS CEA Univ. Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, Gif-sur-Yvette 91198, France.
Some bacteria produce and perceive quorum-sensing (QS) signals that coordinate several behaviours, including the costly processes that are exoenzyme production and plasmid transfer. In the case of plasmid transfer, the emergence of QS signal-altered invaders and their policing are poorly documented. In Agrobacterium tumefaciens, the virulence Ti-plasmid encodes both synthesis and sensing of QS-signals, which promote its transfer from a donor to a recipient cell.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!