Active drag force in swimming can be calculated from a function of five different variables: swim velocity, tow velocity, belt force, power output and exponent of velocity. The accuracy of the drag force value is dependent on the accuracy of each variable, and on the contribution of each variable to drag estimation. To calculate uncertainty in drag value, first the derivatives of the active drag equation with respect to each variable were obtained. Second, these were multiplied by the uncertainty of that variable. Twelve national age and open level swimmers were recruited to complete four free swimming and five active drag trials. The uncertainties for the free and the tow swim velocities, and for the belt force, contributed approximately 5-6% and 2-3% error, respectively, in calculation of drag. The result of the uncertainty of the velocity exponent (1.8-2.6) indicated a contribution of about 6% error in active drag. The contribution of unequal power output showed that if a power changed 7.5% between conditions, it would lead to about 30% error in calculated drag. Consequently, if a swimmer did not maintain constant power output between conditions, there would be substantial errors in the calculation of active drag.

Download full-text PDF

Source
http://dx.doi.org/10.1080/02640414.2016.1276295DOI Listing

Publication Analysis

Top Keywords

active drag
24
power output
12
drag
11
swimming active
8
drag force
8
belt force
8
active
6
contribution
4
contribution uncertainty
4
uncertainty estimation
4

Similar Publications

The warm Western Boundary Currents (WBCs) and their zonal extensions are persistent, deep, strong and narrow oceanic currents. They are known to anchor and energize the Extra-Tropical storm tracks by frontal thermal air-sea interactions. However, even in the latest generation of climate models, WBCs are characterized by large biases, and both the present storm-track activity and its recent intensification are poorly estimated.

View Article and Find Full Text PDF

Many flights, with their precise positioning capabilities, have provided rich inspiration for designing insect-styled micro air vehicles. However, researchers have not widely studied their flight ability. In particular, research on the maneuverability of using integrated kinematics and aerodynamics is scarce.

View Article and Find Full Text PDF

An experimental study was carried out to investigate the effects of biomimetic vortex generators (biomimetic-VGs) on the aerodynamic performance of the NACA0015 airfoil. Aerodynamic force measurements and titanium dioxide (TiO) based flow visualization technique experiments were performed for test models at Re = 1.2 × 10.

View Article and Find Full Text PDF

Optimization of swim depth across diverse taxa during horizontal travel.

Proc Natl Acad Sci U S A

December 2024

Deakin Marine Research and Innovation Centre, School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3280, Australia.

Semiaquatic taxa, including humans, often swim at the air-water interface where they waste energy generating surface waves. For fully marine animals however, theory predicts the most cost-efficient depth-use pattern for migrating, air-breathing species that do not feed in transit is to travel at around 2 to 3 times the depth of their body diameter, to minimize the vertical distance traveled while avoiding wave drag close to the surface. This has rarely been examined, however, due to depth measurement resolution issues at the surface.

View Article and Find Full Text PDF

Many wingless arboreal arthropods can glide back to tree trunks following free falls. However, little is known about the behaviors and aerodynamics underlying such aerial performance, and how this may be influenced by body size. Here, we studied gliding performance by nymphs of the stick insect Extatosoma tiaratum, focusing on the dynamics of J-shaped trajectories and how gliding capability changes during ontogeny.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!