Chikungunya virus is a growing human pathogen transmitted by mosquito bite. It causes fever, chills, nausea, vomiting, joint pain, headache, and swelling in the joints. Its replication and propagation depend on the protease activity of the Chikungunya virus-nsP2 protein, which cleaves the nsP1234 polyprotein replication complex into individual functional units. The N-terminal segment of papain is structurally identical with the Chikungunya virus-nsP2 protease. Hence, molecular dynamics simulations were performed to compare molecular mechanism of these proteases. The Chikungunya virus-snP2 protease shows more conformational changes and adopts an alternate conformation. However, N-terminal segment of these two proteases has identical active site scaffold with the conserved catalytic diad. Hence, some of the non-peptide inhibitors of papain were used for induced fit docking at the active site of the nsP2 to assess the binding mode. In addition, the peptides that connect different domains/protein in Chikungunya virus poly-protein were also subjected for docking. The overall results suggest that the active site scaffold is the same in both the proteases and a possibility exists to experimentally assess the efficacy of some of the papain inhibitors to inhibit the Chikungunya virus-nsP2.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/cbdd.12901 | DOI Listing |
PLoS Pathog
December 2024
Regional Centre for Biotechnology, Faridabad, India.
Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus causing fever, myalgia, and debilitating joint swelling and pain, which in many patients becomes chronic. The frequent epidemics of CHIKV across the world pose a significant public health burden necessitating the development of effective antiviral therapeutics. A cellular imaging-based high-content screening of natural compounds identified withaferin A (WFA), a steroidal lactone isolated from the plant Withania somnifera, as a potent antiviral against CHIKV.
View Article and Find Full Text PDFbioRxiv
January 2025
READDI AViDD Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
Non-structural protein 2 (nsP2), which plays an essential role in replication of CHIKV, contains a protease, helicase, and methyltransferase-like domain. We executed a simple a screen using malachite green to detect compounds that decreased ATP hydrolysis and tested a library of diverse compounds to find inhibitors of CHIKV nsP2 helicase.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2024
Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.
Unlabelled: Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that has been responsible for numerous large-scale outbreaks in the last twenty years. Currently, there are no FDA-approved therapeutics for any alphavirus infection. CHIKV non-structural protein 2 (nsP2), which contains a cysteine protease domain, is essential for viral replication, making it an attractive target for a drug discovery campaign.
View Article and Find Full Text PDFCell Mol Life Sci
February 2023
Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
Replication of viruses requires interaction with host cell factors and repression of innate immunity. Recent findings suggest that a subset of intracellular mono-ADP-ribosylating PARPs, which are induced by type I interferons, possess antiviral activity. Moreover, certain RNA viruses, including Chikungunya virus (CHIKV), encode mono-ADP-ribosylhydrolases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!