Study of traits and recalcitrance reduction of field-grown down-regulated switchgrass.

Biotechnol Biofuels

BioEnergy Science Center (BESC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN USA ; BioSciences Division, ORNL, Oak Ridge, TN USA ; UT-ORNL Joint Institute for Biological Sciences, Oak Ridge, TN USA ; Department of Chemical and Biomolecular Engineering & Department of Forestry, Wildlife and Fisheries, University of Tennessee, Knoxville, TN USA.

Published: January 2017

Background: The native recalcitrance of plants hinders the biomass conversion process using current biorefinery techniques. Down-regulation of the caffeic acid -methyltransferase () gene in the lignin biosynthesis pathway of switchgrass reduced the thermochemical and biochemical conversion recalcitrance of biomass. Due to potential environmental influences on lignin biosynthesis and deposition, studying the consequences of physicochemical changes in field-grown plants without pretreatment is essential to evaluate the performance of lignin-altered plants. We determined the chemical composition, cellulose crystallinity and the degree of its polymerization, molecular weight of hemicellulose, and cellulose accessibility of cell walls in order to better understand the fundamental features of why biomass is recalcitrant to conversion without pretreatment. The most important is to investigate whether traits and features are stable in the dynamics of field environmental effects over multiple years.

Results: Field-grown down-regulated plants maintained both reduced cell wall recalcitrance and lignin content compared with the non-transgenic controls for at least 3 seasons. The transgenic switchgrass yielded 35-84% higher total sugar release (enzymatic digestibility or saccharification) from a 72-h enzymatic hydrolysis without pretreatment and also had a 25-32% increase in enzymatic sugar release after hydrothermal pretreatment. The -silenced switchgrass lines had consistently lower lignin content, e.g., 12 and 14% reduction for year 2 and year 3 growing season, respectively, than the control plants. By contrast, the transgenic lines had 7-8% more xylan and galactan contents than the wild-type controls. Gel permeation chromatographic results revealed that the weight-average molecular weights of hemicellulose were 7-11% lower in the transgenic than in the control lines. In addition, we found that silencing of in switchgrass led to 20-22% increased cellulose accessibility as measured by the Simons' stain protocol. No significant changes were observed on the arabinan and glucan contents, cellulose crystallinity, and cellulose degree of polymerization between the transgenic and control plants. With the 2-year comparative analysis, both the control and transgenic lines had significant increases in lignin and glucan contents and hemicellulose molecular weight across the growing seasons.

Conclusions: The down-regulation of in switchgrass resulting in a reduced lignin content and biomass recalcitrance is stable in a field-grown trial for at least three seasons. Among the determined affecting factors, the reduced biomass recalcitrance of the -silenced switchgrass, grown in the field conditions for two and three seasons, was likely related to the decreased lignin content and increased biomass accessibility, whereas the cellulose crystallinity and degree of its polymerization and hemicellulose molecular weights did not contribute to the reduction of recalcitrance significantly. This finding suggests that lignin down-regulation in lignocellulosic feedstock confers improved saccharification that translates from greenhouse to field trial and that lignin content and biomass accessibility are two significant factors for developing a reduced recalcitrance feedstock by genetic modification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5209956PMC
http://dx.doi.org/10.1186/s13068-016-0695-7DOI Listing

Publication Analysis

Top Keywords

lignin content
20
cellulose crystallinity
12
degree polymerization
12
lignin
9
recalcitrance
8
field-grown down-regulated
8
lignin biosynthesis
8
switchgrass reduced
8
crystallinity degree
8
molecular weight
8

Similar Publications

The objective of this study was to determine the effects of dietary agro-industrial by-products (AIBP) with different amounts of metabolizable energy (ME) and crude protein (CP) on fermentation (96 h) and gas production (GP) kinetics in vitro, as well as acceptability, animal performance, digestibility, and blood parameters in lambs. The gas production technique (GPT) and fermentation characteristics were used in an in vitro trial. This experiment used diets with ME contents of 6.

View Article and Find Full Text PDF

Bio-inspired modification of nanocellulose based on in-situ homogeneous radical coupling of coniferin.

Int J Biol Macromol

December 2024

Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China.

A bioinspired method for surface modification of nanocellulose has been proposed, drawing inspiration from the lignification process in plant cell walls. Unlike traditional methods for synthesizing dehydrogenation polymers (DHPs) of lignin, this study innovatively prepared a water-soluble DHPs precursor, coniferin, which underwent homogeneous polymerization catalyzed by peroxidase to generate DHPs that adhered to the surface of nanocellulose. Modified nanocellulose was then filtered into membranes, and the presence of DHPs increased the water contact angle, achieving high hydrophobicity with little DHPs content.

View Article and Find Full Text PDF

Paper mulberry () is a high-quality silage protein feed material that can help address feed shortages and support livestock development. Although some studies have investigated the relationships between microbial communities and silage quality, these relationships and the underlying community assembly processes remain complex, requiring further research to clarify them. Additionally, limited research has explored the relationship between microbial community fermentation functions and silage quality.

View Article and Find Full Text PDF

The present study demonstrates the applicability of non-destructive and rapid spectroscopic techniques, specifically laser-induced fluorescence, ultraviolet-visible, and confocal micro-Raman spectroscopy, as non-invasive, eco-friendly, and robust multi-compound analytical methods for assessing biochemical changes in maize seedling leaves resulting from the treatment of aluminium oxide nanoparticles. The recorded fluorescence spectrum of the leaves shows that the treatment of different concentration of aluminium oxide nanoparticles decreases the chlorophyll content as observed by the increase in fluorescence emission intensity ratio (FIR = I/I). The analysis of ultraviolet-visible absorption measurements reveals that the amount of chlorophyll a, chlorophyll b, total chlorophyll and carotenoid decrease for treated plants with respect to untreated seedlings.

View Article and Find Full Text PDF

Forage sources in total mixed rations on rumen fermentation, gut fill, and development of the gastrointestinal tract of dairy calves.

Sci Rep

December 2024

Department of Animal Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Av. Pádua Dias, n 11, Piracicaba, SP, 1341-900, Brazil.

The inclusion of forage sources in calf diets is often discussed, and the main point debated is whether the inclusion level, particle size, source, and how forage is offered may impact gut fill and reduce body weight gain, as well as impact gastrointestinal tract development. This study aimed to determine the effects of feeding forage sources with different qualities on rumen fermentation, gut fill, and development of the gastrointestinal tract of dairy calves. Forty-eight Holstein dairy calves were blocked according to sex and body weight (BW) at 28 days of life and randomly assigned to 1 of 4 dietary treatments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!