Despite routine treatment of unselected acute promyelocytic leukemia (APL) with all--retinoic acid (ATRA), early death because of hemorrhage remains unacceptably common, and the mechanism underlying this complication remains elusive. We have recently demonstrated that APL cells undergo a novel cell death program, termed ETosis, which involves release of extracellular chromatin. However, the role of promyelocytic extracellular chromatin in APL-associated coagulation remains unclear. Our objectives were to identify the novel role of ATRA-promoted extracellular chromatin in inducing a hypercoagulable and hyperfibrinolytic state in APL and to evaluate its interaction with fibrin and endothelial cells (ECs). Results from a series of coagulation assays have shown that promyelocytic extracellular chromatin increases thrombin and plasmin generation, causes a shortening of plasma clotting time of APL cells, and increases fibrin formation. DNase I but not anti-tissue factor antibody could inhibit these effects. Immunofluorescence staining showed that promyelocytic extracellular chromatin and phosphatidylserine on APL cells provide platforms for fibrin deposition and render clots more resistant to fibrinolysis. Additionally, coincubation assays revealed that promyelocytic extracellular chromatin is cytotoxic to ECs, converting them to a procoagulant phenotype. This cytotoxity was blocked by DNase I by 20% or activated protein C by 31%. Our current results thus delineate the pathogenic role of promyelocytic extracellular chromatin in APL coagulopathy. Furthermore, the remaining coagulation disturbance in high-risk APL patients after ATRA administration may be treatable by intrinsic pathway inhibition via accelerating extracellular chromatin degradation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5374289 | PMC |
http://dx.doi.org/10.1182/blood-2016-09-739334 | DOI Listing |
Cell Rep
December 2024
Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 311121, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, Zhejiang Province 314400, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang Province 310058, China. Electronic address:
Biomaterials that mimic extracellular matrix topography are crucial in tissue engineering. Previous research indicates that certain biomimetic topography can guide stem cells toward multiple specific lineages. However, the mechanisms by which topographic cues direct stem cell differentiation remain unclear.
View Article and Find Full Text PDFJ Biomed Mater Res A
January 2025
Department of Bioengineering, Stanford University, Stanford, California, USA.
Osteoarthritis (OA) is a prevalen degenerative joint disease with no FDA-approved therapies that can halt or reverse its progression. Current treatments address symptoms like pain and inflammation, but not underlying disease mechanisms. OA progression is marked by increased inflammation and extracellular matrix (ECM) degradation of the joint cartilage.
View Article and Find Full Text PDFKaohsiung J Med Sci
December 2024
Department of General Surgery Ward One, Anyang Tumor Hospital, Anyang, Henan, China.
The incidence and development of various tumors, such as hepatocellular carcinoma (HCC), are linked to tumor stem cells. Although research has revealed how important SCL/TAL1 interruption site (STIL) is in many human tumors, the impact of STIL on HCC stem cells is poorly understood. This study aimed to examine the regulatory mechanisms and the function of STIL in the stemness of HCC tumor cells.
View Article and Find Full Text PDFJ Cell Sci
December 2024
Epigenetics, Babraham Institute, Cambridge CB22 3AT, UK.
Animal genomes are packaged into chromatin, a highly dynamic macromolecular structure of DNA and histone proteins organised into nucleosomes. This accommodates packaging of lengthy genomic sequences within the physical confines of the nucleus while also enabling precise regulation of access to genetic information. However, histones existed before chromatin and have lesser-known functions beyond genome regulation.
View Article and Find Full Text PDFCirculation
December 2024
School of Life Science and Technology (S.K., D.D., M.Y., Y.S., T.F., Z.J., J.M., C.L., X.L., H.Z.).
Background: Cardiac fibrosis, characterized by excessive extracellular matrix (ECM) deposition in the myocardium, is an important target for heart disease treatments. (paternally expressed gene 3) is an imprinted gene expressed from the paternal allele, and de novo purine biosynthesis (DNPB) is a crucial pathway for nucleotide synthesis. However, the roles of PW1 and DNPB in ECM production by cardiac fibroblasts during myocardial ischemia are not yet understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!