The sodium-dependent NADH dehydrogenase (Na-NQR) is a key component of the respiratory chain of diverse prokaryotic species, including pathogenic bacteria. Na-NQR uses the energy released by electron transfer between NADH and ubiquinone (UQ) to pump sodium, producing a gradient that sustains many essential homeostatic processes as well as virulence factor secretion and the elimination of drugs. The location of the UQ binding site has been controversial, with two main hypotheses that suggest that this site could be located in the cytosolic subunit A or in the membrane-bound subunit B. In this work, we performed alanine scanning mutagenesis of aromatic residues located in transmembrane helices II, IV, and V of subunit B, near glycine residues 140 and 141. These two critical glycine residues form part of the structures that regulate the site's accessibility. Our results indicate that the elimination of phenylalanine residue 211 or 213 abolishes the UQ-dependent activity, produces a leak of electrons to oxygen, and completely blocks the binding of UQ and the inhibitor HQNO. Molecular docking calculations predict that UQ interacts with phenylalanine 211 and pinpoints the location of the binding site in the interface of subunits B and D. The mutagenesis and structural analysis allow us to propose a novel UQ-binding motif, which is completely different compared with the sites of other respiratory photosynthetic complexes. These results are essential to understanding the electron transfer pathways and mechanism of Na-NQR catalysis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5314197 | PMC |
http://dx.doi.org/10.1074/jbc.M116.770982 | DOI Listing |
J Clin Invest
April 2023
Nephrology Division, Department of Medicine, and.
How phosphate levels are detected in mammals is unknown. The bone-derived hormone fibroblast growth factor 23 (FGF23) lowers blood phosphate levels by reducing kidney phosphate reabsorption and 1,25(OH)2D production, but phosphate does not directly stimulate bone FGF23 expression. Using PET scanning and LC-MS, we found that phosphate increases kidney-specific glycolysis and synthesis of glycerol-3-phosphate (G-3-P), which then circulates to bone to trigger FGF23 production.
View Article and Find Full Text PDFISME J
December 2020
University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria.
Nitrite-oxidizing bacteria of the genus Nitrospira are key players of the biogeochemical nitrogen cycle. However, little is known about their occurrence and survival strategies in extreme pH environments. Here, we report on the discovery of physiologically versatile, haloalkalitolerant Nitrospira that drive nitrite oxidation at exceptionally high pH.
View Article and Find Full Text PDFFEMS Microbiol Lett
December 2017
Acetogenesis with CO2:H2 or CO via the reductive acetyl-CoA pathway does not provide any net ATP formation in homoacetogenic bacteria. Autotrophic energy conservation is coupled to the generation of chemiosmotic H+ or Na+ gradients across the cytoplasm membrane using either a ferredoxin:NAD+ oxidoreductase (Rnf), a ferredoxin:H+ oxidoreductase (Ech) or substrate-level phosphorylation via cytochromes. The first isolated acetogenic bacterium Clostridium aceticum shows both cytochromes and Rnf complex, putting it into an outstanding position.
View Article and Find Full Text PDFJ Biol Chem
February 2017
From the Departments of Biological Sciences and
The sodium-dependent NADH dehydrogenase (Na-NQR) is a key component of the respiratory chain of diverse prokaryotic species, including pathogenic bacteria. Na-NQR uses the energy released by electron transfer between NADH and ubiquinone (UQ) to pump sodium, producing a gradient that sustains many essential homeostatic processes as well as virulence factor secretion and the elimination of drugs. The location of the UQ binding site has been controversial, with two main hypotheses that suggest that this site could be located in the cytosolic subunit A or in the membrane-bound subunit B.
View Article and Find Full Text PDFActa Pharm Sin B
March 2015
Department of Pharmacology, Toxicology and Therapeutics, the University of Kansas Medical Center, Kansas City, KS 66160, USA.
Alcoholic liver disease (ALD) is one of the major causes of liver morbidity and mortality worldwide. Chronic alcohol consumption leads to development of liver pathogenesis encompassing steatosis, inflammation, fibrosis, cirrhosis, and in extreme cases, hepatocellular carcinoma. Moreover, ALD may also associate with cholestasis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!