Background: Efforts to construct the Streptomyces host strain with enhanced yields of heterologous product have focussed mostly on engineering of primary metabolism and/or the deletion of endogenous biosynthetic gene clusters. However, other factors, such as chromosome compactization, have been shown to have a significant influence on gene expression levels in bacteria and fungi. The expression of genes and biosynthetic gene clusters may vary significantly depending on their location within the chromosome. Little is known about the position effect in actinomycetes, which are important producers of various industrially relevant bioactive molecules.
Results: To demonstrate an impact of the chromosomal position effect on the heterologous expression of genes and gene clusters in Streptomyces albus J1074, a transposon mutant library with randomly distributed transposon that includes a β-glucuronidase reporter gene was generated. Reporter gene expression levels have been shown to depend on the position on the chromosome. Using a combination of the transposon system and a φC31-based vector, the aranciamycin biosynthetic cluster was introduced randomly into the S. albus genome. The production levels of aranciamycin varied up to eightfold depending on the location of the gene cluster within the chromosome of S. albus J1074. One of the isolated mutant strains with an artificially introduced attachment site produced approximately 50% more aranciamycin than strains with endogenous attBs.
Conclusions: In this study, we demonstrate that expression of the reporter gene and aranciamycin biosynthetic cluster in Streptomyces albus J1074 varies up to eightfold depending on its position on the chromosome. The integration of the heterologous cluster into different locations on the chromosome may significantly influence the titre of the produced substance. This knowledge can be used for the more efficient engineering of Actinobacteria via the relocation of the biosynthetic gene clusters and insertion of additional copies of heterologous constructs in a suitable chromosomal position.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5209838 | PMC |
http://dx.doi.org/10.1186/s12934-016-0619-z | DOI Listing |
Viruses
January 2025
Laboratory of Molecular Microbiology, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia.
is an important opportunistic pathogen often resistant to antibiotics. Specific phages can be useful in eliminating infection caused by . phage vB_KlebPS_265 (KlebP_265) and its host strain were isolated from the sputum of a patient with infection.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Instituto Tecnológico de Sonora, 5 de Febrero 818, Col. Centro, Cd. Obregón 85000, Mexico.
Strain TE5 was isolated from a wheat ( L. subsp. ) rhizosphere grown in a commercial field of wheat in the Yaqui Valley in Mexico.
View Article and Find Full Text PDFPathogens
January 2025
Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
is the causative agent of Chagas disease, a neglected tropical disease, and one of the most important parasitic diseases worldwide. The first genome of was sequenced in 2005, and its complexity made assembly and annotation challenging. Nowadays, new sequencing methods have improved some strains' genome sequence and annotation, revealing this parasite's extensive genetic diversity and complexity.
View Article and Find Full Text PDFPathogens
January 2025
Department of Aquatic Animal Disease, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa 16059, Türkiye.
Consuming raw or undercooked mussels can lead to gastroenteritis and septicemia due to contamination. This study analyzed the prevalence, density, species diversity, and molecular traits of spp. in 48 fresh raw wild mussels (FRMs) and 48 ready-to-eat stuffed mussels (RTE-SMs) through genome analysis, assessing health risks.
View Article and Find Full Text PDFMolecules
January 2025
State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
The medicinal plant is rich in aporphine alkaloids, a type of benzylisoquinoline alkaloid (BIA), with aporphine being the representative and most abundant compound, but our understanding of the biosynthesis of BIAs in this plant has been relatively limited. Previous research reported the genome of and preliminarily identified the norcoclaurine synthase (NCS), which is involved in the early stages of the BIA biosynthetic pathways. However, the key genes promoting the formation of the aporphine skeleton have not yet been reported.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!