Today there are examples that prove the existence of chaotic dynamics at all levels of organization of living systems, except intracellular, although such a possibility has been theoretically predicted. The lack of experimental evidence of chaos generation at the intracellular level in vivo may indicate that during evolution the cell got rid of chaos. This work allows the hypothesis that one of the possible mechanisms for avoiding chaos in gene networks can be a negative evolutionary selection, which prevents fixation or realization of regulatory circuits, creating too mild, from the biological point of view, conditions for the emergence of chaos. It has been shown that one of such circuits may be a combination of negative autoregulation of expression of transcription factors at the level of their synthesis and degradation. The presence of such a circuit results in formation of multiple branches of chaotic solutions as well as formation of hyperchaos with equal and sufficiently low values of the delayed argument that can be implemented not only in eukaryotic, but in prokaryotic cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1142/S0219720016500426 | DOI Listing |
Methods
January 2025
National Center for Applied Mathematics in Hunan, Xiangtan University, Hunan 411105, China; Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education, Xiangtan University, Hunan 411105, China. Electronic address:
The subcellular localization of long non-coding RNAs (lncRNAs) is crucial for understanding the function of lncRNAs. Since the traditional biological experimental methods are time-consuming and some existing computational methods rely on high computing power, we are committed to finding a simple and easy-to-implement method to achieve more efficient prediction of the subcellular localization of lncRNAs. In this work, we proposed a model based on multi-source features and two-stage voting strategy for predicting the subcellular localization of lncRNAs (MVSLLnc).
View Article and Find Full Text PDFChaos
January 2025
Nonlinear Dynamics and Chaos Group, Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch, 7701 Cape Town, South Africa.
Chaos
January 2025
Department of Applied Mathematics, University of Colorado, Boulder, Colorado 80309-0526, USA.
This paper focuses on distinguishing classes of dynamical behavior for one- and two-dimensional torus maps, in particular, between orbits that are incommensurate, resonant, periodic, or chaotic. We first consider Arnold's circle map, for which there is a universal power law for the fraction of nonresonant orbits as a function of the amplitude of the nonlinearity. Our methods give a more precise calculation of the coefficients for this power law.
View Article and Find Full Text PDFChaos
January 2025
State Key Laboratory of Mechanics and Control for Aerospace Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
The aircraft can experience complex environments during the flight. For the random actions, the traditional Gaussian white noise assumption may not be sufficient to depict the realistic stochastic loads on the wing structures. Considering fluctuations with extreme conditions, Lévy noise is a better candidate describing the stochastic dynamical behaviors on the airfoil models.
View Article and Find Full Text PDFChaos
January 2025
School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.
Humans and predators occupy dominant positions in ecosystems and are generally believed to play a decisive role in maintaining ecosystem stability, particularly in the context of virus transmission. However, this may not always be the case. By establishing some ecosystem virus transmission models that cover both human perspectives and predators, we have drawn the following conclusions: (1) Controlling vaccination activities from the human perspective can potentially lower the transmission rate and improve herd immunity, thereby indirectly protecting unvaccinated risk groups.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!