Chaos and hyperchaos in simple gene network with negative feedback and time delays.

J Bioinform Comput Biol

* Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, pr., Lavrentieva 10, Novosibirsk, 630090, Russia.

Published: April 2017

Today there are examples that prove the existence of chaotic dynamics at all levels of organization of living systems, except intracellular, although such a possibility has been theoretically predicted. The lack of experimental evidence of chaos generation at the intracellular level in vivo may indicate that during evolution the cell got rid of chaos. This work allows the hypothesis that one of the possible mechanisms for avoiding chaos in gene networks can be a negative evolutionary selection, which prevents fixation or realization of regulatory circuits, creating too mild, from the biological point of view, conditions for the emergence of chaos. It has been shown that one of such circuits may be a combination of negative autoregulation of expression of transcription factors at the level of their synthesis and degradation. The presence of such a circuit results in formation of multiple branches of chaotic solutions as well as formation of hyperchaos with equal and sufficiently low values of the delayed argument that can be implemented not only in eukaryotic, but in prokaryotic cells.

Download full-text PDF

Source
http://dx.doi.org/10.1142/S0219720016500426DOI Listing

Publication Analysis

Top Keywords

chaos
5
chaos hyperchaos
4
hyperchaos simple
4
simple gene
4
gene network
4
network negative
4
negative feedback
4
feedback time
4
time delays
4
delays today
4

Similar Publications

MVSLLnc: LncRNA subcellular localization prediction based on multi-source features and two-stage voting strategy.

Methods

January 2025

National Center for Applied Mathematics in Hunan, Xiangtan University, Hunan 411105, China; Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education, Xiangtan University, Hunan 411105, China. Electronic address:

The subcellular localization of long non-coding RNAs (lncRNAs) is crucial for understanding the function of lncRNAs. Since the traditional biological experimental methods are time-consuming and some existing computational methods rely on high computing power, we are committed to finding a simple and easy-to-implement method to achieve more efficient prediction of the subcellular localization of lncRNAs. In this work, we proposed a model based on multi-source features and two-stage voting strategy for predicting the subcellular localization of lncRNAs (MVSLLnc).

View Article and Find Full Text PDF

Erratum: "Chaotic dynamics of graphene and graphene nanoribbons" [Chaos 30, 063150 (2020)].

Chaos

January 2025

Nonlinear Dynamics and Chaos Group, Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch, 7701 Cape Town, South Africa.

View Article and Find Full Text PDF

Proportions of incommensurate, resonant, and chaotic orbits for torus maps.

Chaos

January 2025

Department of Applied Mathematics, University of Colorado, Boulder, Colorado 80309-0526, USA.

This paper focuses on distinguishing classes of dynamical behavior for one- and two-dimensional torus maps, in particular, between orbits that are incommensurate, resonant, periodic, or chaotic. We first consider Arnold's circle map, for which there is a universal power law for the fraction of nonresonant orbits as a function of the amplitude of the nonlinearity. Our methods give a more precise calculation of the coefficients for this power law.

View Article and Find Full Text PDF

Inverse stochastic resonance in a two-dimensional airfoil system with nonlinear pitching stiffness driven by Lévy noise.

Chaos

January 2025

State Key Laboratory of Mechanics and Control for Aerospace Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.

The aircraft can experience complex environments during the flight. For the random actions, the traditional Gaussian white noise assumption may not be sufficient to depict the realistic stochastic loads on the wing structures. Considering fluctuations with extreme conditions, Lévy noise is a better candidate describing the stochastic dynamical behaviors on the airfoil models.

View Article and Find Full Text PDF

Humans and predators occupy dominant positions in ecosystems and are generally believed to play a decisive role in maintaining ecosystem stability, particularly in the context of virus transmission. However, this may not always be the case. By establishing some ecosystem virus transmission models that cover both human perspectives and predators, we have drawn the following conclusions: (1) Controlling vaccination activities from the human perspective can potentially lower the transmission rate and improve herd immunity, thereby indirectly protecting unvaccinated risk groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!