A rapid and sensitive method involving liquid chromatography electrospray tandem mass spectrometry (LC-ESI-MS/MS) coupled to an intracerebral microdialysis technique was developed for the determination and pharmacokinetic investigation of tramadol and its major active metabolite O-desmethyltramadol (ODT) in rat brain. The microdialysis samples were separated on a C18 column and eluted with a mobile phase of acetonitrile-water-formic acid (50:50:0.1; v/v/v) at a flow rate of 0.3 mL/min. The ESI-MS/MS spectra were performed in electrospray positive ion mode, and the analytes were detected by multiple reaction monitoring (MRM) of the transitions m/z [M + H] 264.3 → 58.2 for tramadol, m/z [M + H] 250.3 → 58.3 for ODT, and m/z [M + H] 379.4 → 264.0 for ambroxol (internal standard; IS). The total run time was 4.0 min. A lower limit of quantitation (LLOQ) was achieved as 1 ng/mL for tramadol and 0.5 ng/mL for ODT, with excellent linearity over a concentration range of 1 ~ 500 ng/mL (r > 0.99) for tramadol and 0.5 ~ 50 ng/mL for ODT (r > 0.99), respectively. The proposed method was successfully applied to the pharmacokinetic studies of tramadol and ODT in rat brain. Copyright © 2017 John Wiley & Sons, Ltd.

Download full-text PDF

Source
http://dx.doi.org/10.1002/dta.2157DOI Listing

Publication Analysis

Top Keywords

rat brain
12
m/z [m + h]
12
intracerebral microdialysis
8
tramadol major
8
active metabolite
8
metabolite o-desmethyltramadol
8
odt rat
8
tramadol
6
odt
5
microdialysis coupled
4

Similar Publications

Aim: The aim of this study was to compare the effects of dexmedetomidine, midazolam, propofol, and intralipid on lidocaine-induced cardiotoxicity and neurotoxicity.

Methods: Forty-eight male Sprague-Dawley rats were randomly divided into six groups (n = 8 per group): control (C), lidocaine (L), lidocaine + dexmedetomidine (LD), lidocaine + midazolam (LM), lidocaine + propofol (LP), and lidocaine + intralipid (LI). Dexmedetomidine (100 µg/kg), midazolam (4 mg/kg), propofol (40 mg/kg), and intralipid (10 mg/kg) were administered intraperitoneally as pretreatment.

View Article and Find Full Text PDF

Background: Neurodegeneration due to neurotoxicity is one of the phenomena in temporal lobe epilepsy. Experimentally, hippocampal excitotoxicity process can occur due to kainic acid exposure, especially in the CA3 area. Neuronal death, astrocyte reactivity and increased calcium also occur in hippocampal excitotoxicity, but few studies have investigated immediate effect after kainic acid exposure.

View Article and Find Full Text PDF

The sphingosine-1-phosphate-5 (S1P) receptor is one of the five membrane G protein-coupled receptors that are activated by the lysophospholipid, sphingosine-1-phosphate, resulting in regulation of many cellular processes. S1P receptors are located on oligodendrocytes and are proposed to influence oligodendrocyte physiology. Understanding S1P modulation during processes such as remyelination could have potential applications for demyelinating CNS disorders such as multiple sclerosis (MS).

View Article and Find Full Text PDF

Velvet bean is a native Indonesian legume containing L-dopa, yet it remains underutilized. The aim of this study was to analyze the effects of different types of tempe (soybean, velvet bean, and their combination) on cognitive function, brain histology, dopamine levels, and serum β-amyloid in rats, as well as to identify the parameters most influencing cognitive function, including brain mass and volume, hippocampal neuron count, and dopamine and β-amyloid levels. An experimental study was conducted using a completely randomized design with one factor: the protein source of diet.

View Article and Find Full Text PDF

Ischemic stroke is a sudden onset of neurological deficit resulting from a blockage in cerebral blood vessels, which can lead to brain tissue damage, chronic disability, and increased risk of mortality. Secretome from hypoxic mesenchymal stem cells (SH-MSC) is a potential therapy to improve neurological deficit by increasing the expression of vascular endothelial growth factor (VEGF) and reducing glial fibrillary acidic protein (GFAP). These effects can reduce the infarction area of ischemic stroke.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!