Phloem sap contains a large number of macromolecules, including proteins and RNAs from different classes. Proteome analyses of phloem samples from different plant species under denaturing conditions identified hundreds of proteins potentially involved in diverse processes. Surprisingly, these studies also found a significant number of ribosomal and proteasomal proteins. This led to the suggestion that active ribosome and proteasome complexes might be present in the phloem, challenging the paradigm that protein synthesis and turnover are absent from the enucleate sieve elements of angiosperms. However, the existence of such complexes has as yet not been demonstrated. In this study we used three-dimensional gel electrophoresis to separate several protein complexes from native phloem sap from Brassica napus. Matrix-assisted laser desorption ionization-time of flight MS analyses identified more than 100 proteins in the three major protein-containing complexes. All three complexes contained proteins belonging to different ribosomal fragments and blue native northern blot confirmed the existence of ribonucleoprotein complexes. In addition, one complex contained proteasome components and further functional analyses confirmed activity of a proteasomal degradation pathway and showed a large number of ubiquitinated phloem proteins. Our results suggest specialized roles for ubiquitin modification and proteasome-mediated degradation in the phloem.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6079638PMC
http://dx.doi.org/10.1111/nph.14405DOI Listing

Publication Analysis

Top Keywords

brassica napus
8
ribonucleoprotein complexes
8
complexes phloem
8
phloem sap
8
large number
8
phloem
7
complexes
7
proteins
6
functional analysis
4
analysis brassica
4

Similar Publications

- Essential Oil: Chemical Composition, Phytotoxic Activity and Environmental Safety.

Plants (Basel)

January 2025

Department of Biology, Faculty of Humanities and Natural Sciences, University of Prešov, 17 Novembra 1, 08001 Prešov, Slovakia.

Weeds cause a decrease in the quantity and quality of agricultural production and economic damage to producers. The prolonged use of synthetic pesticides causes problems of environmental pollution, the possible alteration of agricultural products and problems for human health. For this reason, the scientific community's search for products of natural origin, which are biodegradable, safe for human health and can act as valid alternatives to traditional herbicides, is growing.

View Article and Find Full Text PDF

Rapeseed ( L.) is one of the four major oilseed crops in the world and is rich in fatty acids. Changes in the fatty acid composition affect the quality of rapeseed.

View Article and Find Full Text PDF

Morphological, Physiological, and Molecular Responses to Heat Stress in Brassicaceae.

Plants (Basel)

January 2025

Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China.

Food security is threatened by global warming, which also affects agricultural output. Various components of cells perceive elevated temperatures. Different signaling pathways in plants distinguish between the two types of temperature increases, mild warm temperatures and extremely hot temperatures.

View Article and Find Full Text PDF

is a member of the cruciferous family with rich glucosinolate (GSL) content, particularly glucobrassicin (3-indolylmethyl glucosinolate, I3M), that can be metabolized into indole-3-carbinol (I3C), a compound with promising anticancer properties. To unravel the genetic mechanism influencing I3C content in rapeseed seedlings, a comprehensive study was undertaken with a doubled haploid (DH) population. By quantitative trait loci (QTL) mapping, seven QTL that were located on A01, A07, and C04 were identified, with the most significant contribution to phenotypic variation observed on chromosome A07 (11.

View Article and Find Full Text PDF

Potassium, an essential inorganic cation, is crucial for the growth of oil crops like L. Given the scarcity of potassium in soil, enhancing rapeseed's potassium utilization efficiency is of significant importance. This study identified 376 potassium utilization genes in the genome of ZS11 through homologous retrieval, encompassing 7 functional and 12 regulatory gene families.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!