Mycoplasma gallisepticum is a common etiological cause of a chronic respiratory disease in chickens; its increasing antimicrobial resistance compromises the use of tetracyclines, macrolides and quinolones in the farm environment. Mutant selection window (MSW) determination was used to investigate the propensity for future resistance induction by danofloxacin, doxycycline, tilmicosin, tylvalosin and valnemulin. Killing of M. gallisepticum strain S6 by these antimicrobials was also studied by incubating M. gallisepticum into medium containing the compounds at the minimal concentration that inhibits colony formation by 99% (MIC99) and the mutant prevention concentration (MPC). Based on the morphology and colony numbers of M. gallisepticum on agar plates, the four kinds of sera in the order of the applicability for culturing M. gallisepticum were swine serum > horse serum > bovine serum > mixed serum. The MPC/MIC99 values for each agent were as follows: danofloxacin > tilmicosin > tylvalosin > doxycycline > valnemulin. MPC generated more rapid and greater magnitude killing than MIC99 against M. gallisepticum. Under exposure of 105-109 CFU/mL at MPC drug levels, valnemulin had the slowest rate of reduction in viable organisms and danofloxacin had the highest rate of reduction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5215565 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0169134 | PLOS |
Vet Med Sci
January 2025
Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
A major risk to the poultry industry is antimicrobial resistance (AMR), specifically with regard to Mycoplasma gallisepticum (MG) infections. The sensitivity patterns of 100 MG isolates to biocides and antibiotics were examined in this study to clarify the interactions between antimicrobial agents and resistance mechanisms. The antimicrobial activity against MG was assessed using broth microdilution, and the results are shown as the minimum inhibitory concentration (MIC) for each strain, the MIC distribution (range), the MIC, and/or the MIC.
View Article and Find Full Text PDFMycoplasma (M.) hyosynoviae is a facultative pathogen, causing arthritis in finisher pigs world-wide. In the absence of a commercial vaccine improvement of housing conditions and antibiotic therapy are the only options to alleviate the clinical signs.
View Article and Find Full Text PDFAntibiotics (Basel)
August 2023
Department of Pharmacology and Toxicology, University of Veterinary Medicine, István Str. 2., H-1078 Budapest, Hungary.
Porcine respiratory disease complex (PRDC) has been a major animal health, welfare, and economic problem in Hungary; therefore, great emphasis should be put on both the prevention and control of this complex disease. As antibacterial agents are effective tools for control, antibiotic susceptibility testing is indispensable for the proper implementation of antibacterial therapy and to prevent the spread of resistance. The best method for this is to determine the minimum inhibitory concentration (MIC) by the broth microdilution method.
View Article and Find Full Text PDFSci Rep
February 2023
Avian Health Research Unit, Department of Veterinary Medicine, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand.
Mycoplasma synoviae (MS) infection is mainly controlled by pathogen-free flocks' maintenance, medication in infected flocks, and vaccination in high-risk flocks. The effective control strategy requires convenient approach for detecting and differentiating MS strains and reliable drug susceptible evidence for deciding on reasonable antimicrobial usage. This study aimed to characterize the partial vlhA gene of nine Thai MS isolates circulated in chickens in 2020, to verify the PCR-RFLP assay for strain differentiation, and to determine the eight antimicrobial susceptibility profiles using microbroth dilution method.
View Article and Find Full Text PDFMycoplasma hyorhinis is an emerging swine pathogen bacterium causing polyserositis and polyarthritis in weaners and finishers. The pathogen is distributed world-wide, generating significant economic losses. No commercially available vaccine is available in Europe.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!