Cognitive Benefits of Exercise Intervention.

Clin Ter

University of Gothenburg, Department of Psychology, Box 500, SE 40530 Gothenburg, Sweden - Network for Empowerment and Well Being, Sweden.

Published: March 2017

Exercise, as a potent epigenetic regulator, implies the potential to counteract pathophysiological processes and alterations in most cardiovascular/respiratory cells and tissues not withstanding a paucity of understanding the underlying molecular mechanisms and doseresponse relationships. In the present account, the assets accruing from physical exercise and its influence upon executive functioning are examined. Under conditions of neuropsychiatric and neurologic ill-health, age-related deterioration of functional and biomarker indicators during healthy and disordered trajectories, neuroimmune and affective unbalance, and epigenetic pressures, exercise offers a large harvest of augmentations in health and well-being. Both animal models and human studies support the premise of manifest gains from regular exercise within several domains, besides cognitive function and mood, notably as the agency of a noninvasive, readily available therapeutic intervention.

Download full-text PDF

Source
http://dx.doi.org/10.7417/CT.2016.1965DOI Listing

Publication Analysis

Top Keywords

exercise
5
cognitive benefits
4
benefits exercise
4
exercise intervention
4
intervention exercise
4
exercise potent
4
potent epigenetic
4
epigenetic regulator
4
regulator implies
4
implies potential
4

Similar Publications

Aerobic exercise prevents renal osteodystrophy via irisin-activated osteoblasts.

JCI Insight

January 2025

Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.

Renal osteodystrophy is commonly seen in patients with chronic kidney disease (CKD) due to disrupted mineral homeostasis. Given the impaired renal function in these patients, common anti-resorptive agents, including bisphosphonates, must be used with caution or even contraindicated. Therefore, an alternative therapy without renal burden to combat renal osteodystrophy is urgently needed.

View Article and Find Full Text PDF

Background: Nasal high flow (NHF) has been proposed to sustain high intensity exercise in people with COPD, but we have a poor understanding of its physiological effects in this clinical setting.

Research Question: What is the effect of NHF during exercise on dynamic respiratory muscle function and activation, cardiorespiratory parameters, endurance capacity, dyspnoea and leg fatigue as compared to control intervention.

Study Design And Methods: Randomized single-blind crossover trial including COPD patients.

View Article and Find Full Text PDF

This study examined internal, external training loads, internal:external ratios, and aerobic adaptations for acute and short-term chronic repeated-sprint training (RST) with blood flow restriction (BFR). Using randomised crossover (Experiment A) and between-subject (Experiment B) designs, 15 and 24 semi-professional Australian footballers completed two and nine RST sessions, respectively. Sessions comprised three sets of 5-7 × 5-second sprints and 25 seconds recovery, with continuous BFR (45% arterial occlusion pressure) or without (Non-BFR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!