Upconversion nanoparticles (UCNPs) with superior optical and chemical features have been broadly employed for in vivo cancer imaging. Generally, UCNPs are surface modified with ligands for cancer active targeting. However, nanoparticles in biological fluids are known to form a long-lived "protein corona", which covers the targeting ligands on nanoparticle surface and dramatically reduces the nanoparticle targeting capabilities. Here, for the first time, we demonstrated that by coating UCNPs with red blood cell (RBC) membranes, the resulting cell membrane-capped nanoparticles (RBC-UCNPs) adsorbed virtually no proteins when exposed to human plasma. We further observed in various scenarios that the cancer targeting ability of folic acid (FA)-functionalized nanoparticles (FA-RBC-UCNPs) was rescued by the cell membrane coating. Next, the FA-RBC-UCNPs were successfully utilized for enhanced in vivo tumor imaging. Finally, blood parameters and histology analysis suggested that no significant systematic toxicity was induced by the injection of biomimetic nanoparticles. Our method provides a new angle on the design of targeted nanoparticles for biomedical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.6b14450 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Fudan University, Department of Macromolecular Science, 2205 Songhu Rd, 200438, Shanghai, CHINA.
Nitrogen heterocyclic carbenes (NHCs) are emerging as effective substitutes for conventional thiol ligands in surface functionalization of nanoparticles (NPs), offering exceptional stability to NPs under harsh conditions. However, the highly reactive feature of NHCs limits their use in introducing chemically active groups onto the NP surface. Herein, we develop a general yet robust strategy for the efficient surface functionalization of NPs with copolymer ligands bearing various functional groups.
View Article and Find Full Text PDFPhotodiagnosis Photodyn Ther
January 2025
Maebashi-Institute of Technology, Systems Life Engineering, Gunma, 371-0816 Japan. Electronic address:
Introduction: The successful diagnosis and treatment of early-stage breast cancer enhances the quality of life of patients. As a promising alternative to recently developed magnetic resonance imaging-guided radiotherapy, we proposed fluorescence molecular imaging-guided photodynamic therapy (FMI-guided PDT), which requires no expensive equipment. In the FMI simulations, ICG-C11 which has emission peaks at near-infrared wavelengths was used as the FMI agent.
View Article and Find Full Text PDFFoods
January 2025
College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
The widespread use of thiamethoxam has led to pesticide residues that have sparked global concerns regarding ecological and human health risks. A pressing requirement exists for a detection method that is both swift and sensitive. Herein, we introduced an innovative fluorescence biosensor constructed from alendronic acid (ADA)-modified upconversion nanoparticles (UCNPs) linked with magnetic nanoparticles (MNPs) via aptamer recognition for the detection of thiamethoxam.
View Article and Find Full Text PDFSmall
January 2025
XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
Semiconductor photocatalysts embedded with rare earth upconversion nanoparticles (REUPs) are a promising strategy to improve their photoresponse range, but their photocatalytic performance within the near-infrared (NIR) region is far from satisfactory. Here, a method is reported to improve the photocatalytic activity by adjusting the nanocavity of upconversion nanoparticles inside a semiconductor. Two types of CdS embedded with NaYF:Yb,Er photocatalysts with core-shell structure (no cavity) (NYE/CdS) and yolk-shell structure (empty cavity) (NYE@CdS) are synthesized by different methods.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Materials Science& Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
Lanthanide-doped upconversion luminescent nanoparticles (UCNPs) have garnered extensive attention due to their notable anti-Stokes shifts and superior photostability. Notably, Ho-based UCNPs present a complex energy level configuration, which poses challenges in augmenting their luminescence efficiency. Herein, a rational design strategy was used to enhance the upconversion luminescence intensity of Ho ions by improving the photon absorption ability and energy utilization efficiency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!