The purpose of this study is to evaluate the probiotic characteristics of 15 yeast strains isolated from nectar of toddy palm. Initially, the collected samples were inoculated on yeast extract peptone dextrose agar plates and the colonies so obtained were culturally and morphologically characterized. Commercial probiotic yeast, Saccharomyces boulardii served as the control in these experiments. Of the 15 yeast strains, the isolates that were resistant to antibiotics and worked synergistically with other cultures were considered for further evaluation. Selected isolates were evaluated in vitro for tolerance to simulated gastrointestinal conditions such as temperature, pH, bile and gastric juice. Further the yeast isolates were evaluated for their pathogenicity and adherence to intestinal epithelial cells. The 2 yeast isolates with efficient probiotic properties were finally characterized by sequencing their 5.8 S rRNA and partial sequences of internal transcribed spacer 1 and 2. The sequences were BLAST searched in the National Center for Biotechnology Information, nucleic acid database for sequence similarity of organisms and phylogenetic evolutionary analysis was carried out. Based on maximum similarity of basic local alignment search tool results, organisms were characterized as Pichia kudriavzevii OBS1 (100%) and Saccharomyces cerevisiae OBS2 (96%) and sequences were finally deposited in the GenBank data library. Among these two isolates, S. cerevisiae OBS2 displayed slight/moderate antioxidant and anticancer property. Hence, strain OBS2 can be utilized and explored as a potential probiotic for therapeutic applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5209330 | PMC |
http://dx.doi.org/10.1186/s13568-016-0301-1 | DOI Listing |
World J Nephrol
December 2024
Department of Nephrology and Dialysis, State Institution "O.O. Shalimov National Scientific Center of Surgery and Transplantology of the National Academy of Medical Science of Ukraine", Kyiv 03680, Ukraine.
Peritoneal dialysis (PD) is a commonly used modality for kidney replacement therapy for patients with end-stage kidney disease (ESKD). PD offers many benefits, including home-based care, greater flexibility, and preservation of residual kidney function compared to in-center hemodialysis. Nonetheless, patients undergoing PD often face significant challenges, including systemic inflammation, PD-related peritonitis, metabolic disorders, and cardiovascular issues that can negatively affect their quality of life and treatment outcomes.
View Article and Find Full Text PDFFront Microbiol
December 2024
College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China.
Introduction: Hyperuricemia (HUA) refers to the presence of excess uric acid (UA) in the blood, which increases the risk of chronic kidney disease and gout. Probiotics have the potential to alleviate HUA.
Methods: This study established a hyperuricemia model using (), and studied the anti-hyperuricemia activity and potential mechanisms of BC99 () at different concentrations (10 CFU/mL BC99, 10 CFU/mL BC99).
Sheng Wu Gong Cheng Xue Bao
December 2024
School of Public Health, Shandong Second Medical University, Weifang 261053, Shandong, China.
The probiotic strain Nissle 1917 (EcN) with high biocompatibility and susceptibility to genetic modification is often applied in bacterial therapies for cancer. However, most studies have used plasmids as vectors to construct engineering strains from EcN. Plasmid-based expression systems suffer from genetic instability, and they need antibiotic selective pressure to maintain high copy number.
View Article and Find Full Text PDFHelicobacter
December 2024
Department of Biotechnology, Berhampur University, Berhampur, Odisha, India.
Background: Helicobacter pylori infection is a major global health concern and has been associated with a number of gastrointestinal disorders. Probiotics, especially Lactobacillus spp., have been suggested to have beneficial effect in managing H.
View Article and Find Full Text PDFCurr Microbiol
December 2024
Department of Medical Laboratory Technology, Dinabandhu Andrews Institute of Technology and Management, BaishnabghataPatuli Township, Block-S, 1/406A, Near Satyajit Ray Park, Patuli, Kolkata, West Bengal, 700094, India.
This review explores the bidirectional relationship between the human microbiome and SARS-CoV-2 infection, elucidating its implications for COVID-19 susceptibility, severity, and therapeutic strategies. Metagenomic analyses reveal notable alterations in microbiome composition associated with SARS-CoV-2 infection, impacting disease severity and clinical outcomes. Dysbiosis within the respiratory, gastrointestinal, oral, and skin microbiomes exacerbates COVID-19 pathology through immune dysregulation and inflammatory pathways.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!