The rodents exposed to repeated cold stress according to a specific schedule, known as specific alternation of rhythm in temperature (SART), exhibit autonomic imbalance, and is now used as an experimental model of fibromyalgia. To explore the susceptibility of SART-stressed animals to novel acute stress, we tested whether exposure of mice to SART stress for 1 week alters the extent of acute restraint stress-induced hyperthermia. Mice were subjected to 7-d SART stress sessions; i.e., the mice were alternately exposed to 24 and 4°C at 1-h intervals during the daytime (09:00-16:00) and kept at 4°C overnight (16:00-09:00). SART-stressed and unstressed mice were exposed to acute restraint stress for 20-60 min, during which rectal temperature was monitored. Serum corticosterone levels were measured before and after 60-min exposure to restraint stress. SART stress itself did not alter the body temperature or serum corticosterone levels in mice. Acute restraint stress increased the body temperature and serum corticosterone levels, both responses being greater in SART-stressed mice than unstressed mice. The enhanced hyperthermic responses to acute restraint stress in SART-stressed mice were significantly attenuated by SR59230A, a β adrenoceptor antagonist, but unaffected by diazepam, an anxiolytic, mifepristone, a glucocorticoid receptor antagonist, or indomethacin, a cyclooxygenase inhibitor. These results suggest that SART stress enhances the susceptibility of mice to acute restraint stress, characterized by increased hyperthermia and corticosterone secretion, and that the increased hyperthermic responses to acute stress might involve accelerated activation of sympathetic β adrenoceptors, known to regulate non-shivering thermogenesis in the brown adipose tissue.

Download full-text PDF

Source
http://dx.doi.org/10.1248/bpb.b16-00343DOI Listing

Publication Analysis

Top Keywords

acute restraint
24
restraint stress
20
sart stress
16
stress
13
serum corticosterone
12
corticosterone levels
12
mice
10
repeated cold
8
cold stress
8
stress enhances
8

Similar Publications

MK-801 attenuates one-trial tolerance in the elevated plus maze via the thalamic nucleus reuniens.

Neuropharmacology

January 2025

Nanhu Brain-computer Interface Institute, Hangzhou, 311100, China; Department of Psychiatry of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, 310058, Hangzhou, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China. Electronic address:

Anxiety, a future-oriented negative emotional state, is characterized by heightened arousal and vigilance. The elevated plus maze (EPM) test is a widely used assay of anxiety-related behaviors in rodents and shows a phenomenon where animals with prior test experience tend to avoid open arms in retest sessions. While this one-trial tolerance (OTT) phenomenon limits the reuse of the EPM test, the potential mechanisms remain unsolved.

View Article and Find Full Text PDF

Stress is a potent modulator of pain. Specifically, acute stress due to physical restraint induces stress-induced analgesia (SIA). However, where and how acute stress and pain pathways interface in the brain are poorly understood.

View Article and Find Full Text PDF

Sex differences in the murine HPA axis after acute and repeated restraint stress.

Stress

December 2025

Department of Preclinical Fluid Biomarkers & Occupancy, H. Lundbeck A/S, Valby, Denmark.

Chronic stress and stress-related mental illnesses such as major depressive disorder (MDD) constitute some of the leading causes of disability worldwide with a higher prevalence in women compared to men. However, preclinical research into stress and MDD is heavily biased toward using male animals only. Aberrant activity of the hypothalamic-pituitary-adrenal (HPA) axis has been linked to the development of MDD and several animal models of MDD have been established based on HPA axis dysregulation.

View Article and Find Full Text PDF

Acute and chronic cannabis vapor exposure influences basal and stress-induced release of glucocorticoids in male and female rats.

Psychoneuroendocrinology

December 2024

Hotchkiss Brain Institute, Mathison Centre for Mental Health Research and Education, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Cell Biology and Anatomy & Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada. Electronic address:

Management of stress and anxiety is often listed as the primary motivation behind cannabis use. Human research has found that chronic cannabis use is associated with increased basal cortisol levels but blunted neuroendocrine responses to stress. Preclinical research has demonstrated mixed effects of Δ-tetrahydrocannabinol (THC; the psychoactive constituent of cannabis), much of which is suggestive of dose-dependent effects; however, the predominance of this work has employed an injection method to deliver cannabis.

View Article and Find Full Text PDF

Role of the medial septum neurotensin receptor 1 in anxiety-like behaviors evoked by emotional stress.

Psychoneuroendocrinology

January 2025

Women and Children's Medical Research Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China. Electronic address:

Anxiety is one of the most common mental disorders. Neurotensin (NT) is a neuropeptide widely distributed in the central nervous system, involved in the pathophysiology of many neural and psychiatric disorders such as anxiety. However, the neural substrates mediating NT's effect on the regulation of anxiety have not been fully identified.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!