Cytosolic Fc receptor TRIM21 inhibits seeded tau aggregation.

Proc Natl Acad Sci U S A

Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom;

Published: January 2017

AI Article Synopsis

  • Alzheimer's disease and similar disorders involve the accumulation of misfolded tau protein, which spreads in the brain similarly to how a virus infects cells.
  • Unlike pathogens, misfolded tau proteins are not recognized as harmful by the immune system since they come from the host itself.
  • The study reveals that when tau aggregates enter cells, they can trigger an immune response involving antibodies and a specific protein (TRIM21), which helps neutralize the misfolded proteins, highlighting a potential pathway for combating neurodegeneration.

Article Abstract

Alzheimer's disease (AD) and other neurodegenerative disorders are associated with the cytoplasmic aggregation of microtubule-associated protein tau. Recent evidence supports transcellular transfer of tau misfolding (seeding) as the mechanism of spread within an affected brain, a process reminiscent of viral infection. However, whereas microbial pathogens can be recognized as nonself by immune receptors, misfolded protein assemblies evade detection, as they are host-derived. Here, we show that when misfolded tau assemblies enter the cell, they can be detected and neutralized via a danger response mediated by tau-associated antibodies and the cytosolic Fc receptor tripartite motif protein 21 (TRIM21). We developed fluorescent, morphology-based seeding assays that allow the formation of pathological tau aggregates to be measured in situ within 24 h in the presence of picomolar concentrations of tau seeds. We found that anti-tau antibodies accompany tau seeds into the cell, where they recruit TRIM21 shortly after entry. After binding, TRIM21 neutralizes tau seeds through the activity of the proteasome and the AAA ATPase p97/VCP in a similar manner to infectious viruses. These results establish that intracellular antiviral immunity can be redirected against host-origin endopathogens involved in neurodegeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5255578PMC
http://dx.doi.org/10.1073/pnas.1607215114DOI Listing

Publication Analysis

Top Keywords

tau seeds
12
cytosolic receptor
8
tau
8
trim21
4
receptor trim21
4
trim21 inhibits
4
inhibits seeded
4
seeded tau
4
tau aggregation
4
aggregation alzheimer's
4

Similar Publications

Oxidative stress is an important driver of aging and has been linked to numerous neurodegenerative disorders, including Alzheimer's disease. A key pathological hallmark of Alzheimer's are filamentous inclusions made of the microtubule associated protein Tau. Based on alternative splicing, Tau protein can feature either three or four microtubule binding repeats.

View Article and Find Full Text PDF

The accumulation of abnormal phosphorylated Tau protein (pTau) in neurons of the brain is a pathological hallmark of Alzheimer's disease (AD). PTau pathology also occurs in the retina of AD cases. Accordingly, questions arise whether retinal pTau can act as a potential seed for inducing cerebral pTau pathology and whether retinal pTau pathology causes degeneration of retinal neurons.

View Article and Find Full Text PDF

The UFMylation pathway is impaired in Alzheimer's disease.

Mol Neurodegener

December 2024

Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA.

Background: Alzheimer's disease (AD) is characterized by the presence of neurofibrillary tangles made of hyperphosphorylated tau and senile plaques composed of beta-amyloid. These pathognomonic deposits have been implicated in the pathogenesis, although the molecular mechanisms and consequences remain undetermined. UFM1 is an important, but understudied ubiquitin-like protein that is covalently attached to substrates.

View Article and Find Full Text PDF

Pathological tau spreads throughout the brain along neuronal connections in Alzheimer's disease (AD), but the mechanisms that underlie this process are poorly understood. Given the high incidence and deleterious consequences of epileptiform activity in AD, we hypothesized neuronal hyperactivity and seizures are key factors in tau spread. To examine these interactions, we created a novel mouse model involving the cross of targeted recombination in active populations (TRAP) mice and the 5 times familial AD (5XFAD; 5X-TRAP) model allowing for the permanent fluorescent labelling of neuronal activity.

View Article and Find Full Text PDF

Cerebral hypoperfusion reduces tau accumulation.

Ann Clin Transl Neurol

December 2024

Department of Aging Neurobiology, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, 7-430 Morioka, Obu, Aichi, 474-8511, Japan.

Objective: Alzheimer's disease (AD) often coexists with cerebrovascular diseases. However, the impact of cerebrovascular diseases such as stroke on AD pathology remains poorly understood.

Methods: This study examines the correlation between cerebrovascular diseases and AD pathology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: