Nuclear modifier gene(s) was proposed to modulate the phenotypic expression of mitochondrial DNA mutation(s). Our previous investigations revealed that a nuclear modifier allele (A10S) in TRMU (methylaminomethyl-2-thiouridylate-methyltransferase) related to tRNA modification interacts with 12S rRNA 1555A→G mutation to cause deafness. The A10S mutation resided at a highly conserved residue of the N-terminal sequence. It was hypothesized that the A10S mutation altered the structure and function of TRMU, thereby causing mitochondrial dysfunction. Using molecular dynamics simulations, we showed that the A10S mutation introduced the Ser dynamic electrostatic interaction with the Lys residue of helix 4 within the catalytic domain of TRMU. The Western blotting analysis displayed the reduced levels of TRMU in mutant cells carrying the A10S mutation. The thermal shift assay revealed the value of mutant TRMU protein, lower than that of the wild-type counterpart. The A10S mutation caused marked decreases in 2-thiouridine modification of U34 of tRNA, tRNA and tRNA However, the A10S mutation mildly increased the aminoacylated efficiency of tRNAs. The altered 2-thiouridine modification worsened the impairment of mitochondrial translation associated with the m.1555A→G mutation. The defective translation resulted in the reduced activities of mitochondrial respiration chains. The respiratory deficiency caused the reduction of mitochondrial ATP production and elevated the production of reactive oxidative species. As a result, mutated TRMU worsened mitochondrial dysfunctions associated with m.1555A→G mutation, exceeding the threshold for expressing a deafness phenotype. Our findings provided new insights into the pathophysiology of maternally inherited deafness that was manifested by interaction between mtDNA mutation and nuclear modifier gene.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5314183 | PMC |
http://dx.doi.org/10.1074/jbc.M116.749374 | DOI Listing |
Mitochondrion
May 2019
Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences (ZUMS), Zanjan, Iran. Electronic address:
Genetic contributing factors to non-syndromic hearing loss (NSHL) are remarkably diverse spanning over autosomal to X-linked to mitochondrial inheritance patterns. Facing a quite unconventional pedigree, here we report implementation of whole exome sequencing (WES) to uncover mitochondrial pathogenic variant in a six-generation Iranian family with four cases affected with hereditary NSHL of variable severity. As a result, heteroplasmic transition of A to G at position 1555 of MT-RNR1 gene was identified in all affected individuals co-existing with nuclear c.
View Article and Find Full Text PDFJ Biol Chem
February 2017
From the Division of Medical Genetics and Genomics, Zhejiang Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China,
Nuclear modifier gene(s) was proposed to modulate the phenotypic expression of mitochondrial DNA mutation(s). Our previous investigations revealed that a nuclear modifier allele (A10S) in TRMU (methylaminomethyl-2-thiouridylate-methyltransferase) related to tRNA modification interacts with 12S rRNA 1555A→G mutation to cause deafness. The A10S mutation resided at a highly conserved residue of the N-terminal sequence.
View Article and Find Full Text PDFBiochem Biophys Res Commun
May 2009
Division of Molecular Biology and Human Genetics, University of Stellenbosch, Cape Town, South Africa.
The most common mutation associated with aminoglycoside-induced deafness is A1555G and it has been found in diverse populations worldwide. In the present study we investigated a large South African family known to harbour A1555G. A total of 97 family members were genotyped using the SNaPshot technique and 76 were found to be A1555G-positive (on haplogroup L0d) and are therefore at risk of developing irreversible hearing loss.
View Article and Find Full Text PDFAm J Hum Genet
August 2006
Division and Program in Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!