Recent advances in sequencing technologies have enabled us to scrutinize the versatile underlying mechanisms of cancer more precisely. However, adopting these new sophisticated technologies is challenging for clinical labs as it involves complex workflows, and requires validation for diagnostic purposes. The aim of this work is towards the analytical validation of a next generation sequencing (NGS) panel for cancer hotspot mutation analysis. Characterized formalin-fixed paraffin-embedded (FFPE) samples including biopsy specimens and cell-lines were examined by NGS methods utilizing the Ion Torrent™ Oncomine™ Focus DNA Assay and the PGM™ platform. Important parameters for somatic mutations including the threshold for differentiation of a positive and a negative result, coverage, sensitivity, specificity, and limit of detection (LoD) were analyzed. Variant calls with coverage of <100x were found to be inaccurate. The limit of detection for identifying hotspot mutations was determined to be 4.3%. The sensitivity and specificity of the method were 96.1% and 97.8% respectively. No statistically significant difference was found between different gene targets in terms of performance of hotspot frequency measurement for the subset tested. In every validation study, the number of samples, the manner of sample selection, and the number and type of variants play a role in the outcome. Therefore, these parameters should be assessed according to the clinical needs of each laboratory undertaking the validation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.prp.2016.11.016DOI Listing

Publication Analysis

Top Keywords

validation generation
8
generation sequencing
8
sequencing panel
4
panel detection
4
detection hotspot
4
hotspot cancer
4
cancer mutations
4
mutations clinical
4
clinical laboratory
4
laboratory advances
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!