Glucose homeostasis is crucial for neuronal survival, synaptic plasticity, and is indispensable for learning and memory. Reduced sensitivity of cells to insulin and impaired insulin signaling in brain neurons participate in the pathogenesis of Alzheimer disease (AD). The tumor suppressor protein p53 coordinates with multiple cellular pathways in response to DNA damage and cellular stresses. However, prolonged stress conditions unveil deleterious effects of p53-evoked insulin resistance in neurons; enhancement of transcription of pro-oxidant factors, accumulation of toxic metabolites (e.g. ceramide and products of advanced glycation) and ROS-modified cellular components, together with the activation of proapoptotic genes, could finally induce a suicide death program of autophagy/apoptosis in neurons. Recent studies reveal the impact of p53 on expression and processing of several microRNAs (miRs) under DNA damage-inducing conditions. Additionally, the role of miRs in promotion of insulin resistance and type 2 diabetes mellitus has been well documented. Detailed recognition of the role of p53/miRs crosstalk in driving insulin resistance in AD brains could improve the disease diagnostics and aid future therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1568026617666170103161233 | DOI Listing |
Cardiovasc Diabetol
January 2025
Department of Cardiology, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, People's Republic of China.
Background: Hypertension (HTN) is a global public health concern and a major risk factor for cardiovascular disease (CVD) and mortality. Insulin resistance (IR) plays a crucial role in HTN-related metabolic dysfunction, but its assessment remains challenging. The triglyceride-glucose (TyG) index and its derivatives (TyG-BMI, TyG-WC, and TyG-WHtR) have emerged as reliable IR markers.
View Article and Find Full Text PDFCardiovasc Diabetol
January 2025
Department of Cardiology, the First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China.
Background: Triglyceride-glucose-BMI (TyG-BMI) index is a surrogate marker of insulin resistance and an important predictor of cardiovascular disease. However, the predictive value of TyG-BMI index in the progression of non-severe aortic stenosis (AS) is still unclear.
Methods: The present retrospective observational study was conducted using patient data from Aortic valve diseases RISk facTOr assessmenT andprognosis modeL construction (ARISTOTLE).
Nutr J
January 2025
Paediatrics, Nutrition and Development Research Unit, Universitat Rovira i Virgili. Reus, Tarragona, Spain.
Background & Aim: Metabolic and cardiovascular health outcomes are strongly influenced by diet. Dietary habits established in early childhood may persist into adulthood. This study aimed to examine the association between dietary patterns at both 2 and 8 years of age, explaining the maximum variability of high- and low-quality fats, sugars, and fibre, and cardiometabolic markers at age 8 years.
View Article and Find Full Text PDFCardiovasc Diabetol
January 2025
Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
Background: The triglyceride‒glucose index (TyG index) is a reliable surrogate for insulin resistance (IR) in individuals with type 2 diabetes mellitus and is associated with cardiovascular disease. Recent studies have reported that H-type hypertension is likewise a predictor of adverse events in patients with coronary heart disease (CHD). However, the relationship between the TyG index and prognosis in patients with H-type hypertension combined with CHD has not yet been reported.
View Article and Find Full Text PDFGastroenterol Clin North Am
March 2025
Department of Pediatrics, University of Minnesota, MMC 391, 420 Delaware Street Southeast, Minneapolis, MN 55455, USA. Electronic address:
Diabetes (DM) can occur as a complication of acute, acute recurrent, or chronic pancreatitis, affecting more than 30% of adults with chronic pancreatitis. Data on the pathophysiology and management are limited, especially in pediatric population. Proposed mechanisms include insulin deficiency, insulin resistance, decreased pancreatic polypeptide, and possible beta-cell autoimmunity (in a small subset).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!