The metalloenzyme, carbonic anhydrase (CA), catalyzes the reversible hydration of carbon dioxide into bicarbonate, and is responsible for biomineralization processes in animals. In the Annelida, the marine worms in the family Serpulidae are typified by the construction of calcium carbonate tubes. Hydroides elegans, a common member of warmwater biofouling communities around the world, provides an outstanding model for studies of calcification. To better understand the molecular process of biomineralization in H. elegans, we searched transcriptomes for CA genes at several life-history stages. Twelve CA genes were recovered in the transcriptomes. Whole mount in situ hybridization was performed for two of those genes on larvae and calcifying juveniles. A cytosolic CA isoform, HeCA1, and a secreted CA isoform, HeCA2, were expressed within the collar segment corresponding to the location of glands involved in formation of the calcified tube. Expression of these genes within collar segment tissues supports the role of CAs in generating bicarbonate for biomineralization processes. A phylogenetic tree of the α-CA gene family was constructed to increase understanding of CA-gene evolution within the family and its relationship to CA genes among the Metazoa.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1086/691065 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!