Carbohydrates such as sucrose and maltodextrins are commonly used in dehydrated food beverages. However, these ingredients may have, in some cases, negative impacts on the reconstitution performance (e.g., lump formation), compromising key consumer's expectations. In this study, we propose to discuss the performance of carbohydrates with regard to major physical steps of reconstitution (wetting, capillarity, dispersion, and dissolution). We show how particle size and water temperature drive the kinetics of dissolution of crystalline sucrose and propose descriptive equations. For amorphous maltodextrin, we quantify variations in wetting, capillarity, and dissolution performance as a function of important solid properties (moisture content, molecular weight, and particle size) as well as the liquid temperature. By doing so, we highlight the important role of the glass-transition temperature in relation to the moisture content of the powder. The comprehensive understanding provided by this work may be used to optimize product formulation in term of reconstitution performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.6b04380 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!