Using Electrophoretic Immunoassay to Monitor Hormone Secretion.

Methods Mol Biol

Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI, 48109, USA.

Published: February 2018

It has been demonstrated that microfluidic systems allow integration of sampling, reagent mixing, and rapid electrophoretic analysis. They have also proven useful for culturing cells wherein control over the environment allows novel and automated experiments. Here, we describe a microchip-based electrophoresis assay that allows cell culture and hormone monitoring. An online gradient generator can control cell culture condition precisely. This system has been applied for Pancreas islets' glucose sensitivity studies.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-6734-6_5DOI Listing

Publication Analysis

Top Keywords

cell culture
8
electrophoretic immunoassay
4
immunoassay monitor
4
monitor hormone
4
hormone secretion
4
secretion demonstrated
4
demonstrated microfluidic
4
microfluidic systems
4
systems allow
4
allow integration
4

Similar Publications

The rapid and reliable detection of pathogenic bacteria remains a significant challenge in clinical microbiology. Consequently, the demand for simple and rapid techniques, such as antimicrobial peptide (AMP)-based sensors, has recently increased as an alternative to traditional methods. Melittin, a broad-spectrum AMP, rapidly associates with the cell membranes of various gram-positive and gram-negative bacteria.

View Article and Find Full Text PDF

Background/objectives: Acute myeloid leukemia (AML) is an aggressive neoplasm. Although most patients respond to induction therapy, they commonly relapse due to recurrent disease in the bone marrow microenvironment (BMME). So, the disruption of the BMME, releasing tumor cells into the peripheral circulation, has therapeutic potential.

View Article and Find Full Text PDF

Global Literature Analysis of Tumor Organoid and Tumor-on-Chip Research.

Cancers (Basel)

January 2025

Hybrid Technology Hub, Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway.

: Tumor organoid and tumor-on-chip (ToC) platforms replicate aspects of the anatomical and physiological states of tumors. They, therefore, serve as models for investigating tumor microenvironments, metastasis, and immune interactions, especially for precision drug testing. To map the changing research diversity and focus in this field, we performed a quality-controlled text analysis of categorized academic publications and clinical studies.

View Article and Find Full Text PDF

Background: The physical activity of different groups of individuals results in the rearrangement of microbiota composition toward a symbiotic microbiota profile. This applies to both healthy and diseased individuals. Multiple myeloma (MM), one of the more common hematological malignancies, predominantly affects older adults.

View Article and Find Full Text PDF

Polyunsaturated fatty acids (PUFAs) are vital dietary elements that play a significant role in human nutrition. They are highly regarded for their positive contributions to overall health and well-being. Beyond the fact that they provide a substantial supply of energy to the body (a role that saturated fats can also perform), these unsaturated fatty acids and, especially, the essential ones are involved in cell membrane structure, blood pressure regulation, and coagulation; participate in the proper functioning of the immune system and assimilation of fat-soluble vitamins; influence the synthesis of pro- and anti-inflammatory substances; and protect the cardiovascular system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!