Background: Traditional metrics of lung disease such as those derived from spirometry and static single-volume CT images are used to explain respiratory morbidity in patients with COPD, but are insufficient. We hypothesised that the mean Jacobian determinant, a measure of local lung expansion and contraction with respiration, would contribute independently to clinically relevant functional outcomes.
Methods: We applied image registration techniques to paired inspiratory-expiratory CT scans and derived the Jacobian determinant of the deformation field between the two lung volumes to map local volume change with respiration. We analysed 490 participants with COPD with multivariable regression models to assess strengths of association between traditional CT metrics of disease and the Jacobian determinant with respiratory morbidity including dyspnoea (modified Medical Research Council), St Georges Respiratory Questionnaire (SGRQ) score, 6-min walk distance (6MWD) and the Body Mass Index, Airflow Obstruction, Dyspnoea and Exercise Capacity (BODE) index, as well as all-cause mortality.
Results: The Jacobian determinant was significantly associated with SGRQ (adjusted regression coefficient β=-11.75,95% CI -21.6 to -1.7; p=0.020), and with 6MWD (β=321.15, 95% CI 134.1 to 508.1; p<0.001), independent of age, sex, race, body mass index, FEV, smoking pack-years, CT emphysema, CT gas trapping, airway wall thickness and CT scanner type. The mean Jacobian determinant was also independently associated with the BODE index (β=-0.41, 95% CI -0.80 to -0.02; p=0.039) and mortality on follow-up (adjusted HR=4.26, 95% CI 0.93 to 19.23; p=0.064).
Conclusions: Biomechanical metrics representing local lung expansion and contraction improve prediction of respiratory morbidity and mortality and offer additional prognostic information beyond traditional measures of lung function and static single-volume CT metrics.
Trial Registration Number: NCT00608764; Post-results.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526353 | PMC |
http://dx.doi.org/10.1136/thoraxjnl-2016-209544 | DOI Listing |
Biomimetics (Basel)
December 2024
Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China.
This study presents a novel rod-cable hybrid planar cable-driven parallel robot inspired by the biological synergy of bones and muscles. The design integrates rigid rods and flexible cables to enhance structural stability and precision in motion control. The rods emulate bones, providing foundational support, while the cables mimic muscles, driving motion through coordinated tension.
View Article and Find Full Text PDFEntropy (Basel)
December 2024
School of Metallurgy, Northeastern University, Shenyang 110819, China.
In the present study, the Homotopy Levenberg-Marquardt Algorithm (HLMA) and the Parameter Variation Levenberg-Marquardt Algorithm (PV-LMA), both developed in the context of high-temperature composition, are proposed to address the equilibrium composition model of plasma under the condition of local thermodynamic and chemical equilibrium. This model is essentially a nonlinear system of weakly singular Jacobian matrices. The model was formulated on the basis of the Saha and Guldberg-Waage equations, integrated with Dalton's law of partial pressures, stoichiometric equilibrium, and the law of conservation of charge, resulting in a nonlinear system of equations with a weakly singular Jacobian matrix.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Life Sciences, Imperial College, London, SW7 2AZ, UK.
Many cellular patterns exhibit a reaction-diffusion component, suggesting that Turing instability may contribute to pattern formation. However, biological gene-regulatory pathways are more complex than simple Turing activator-inhibitor models and generally do not require fine-tuning of parameters as dictated by the Turing conditions. To address these issues, we employ random matrix theory to analyze the Jacobian matrices of larger networks with robust statistical properties.
View Article and Find Full Text PDFHeliyon
July 2024
Department of Mathematics, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh.
Qualitative analysis in mathematical modeling has become an important research area within the broad domain of nonlinear sciences. In the realm of qualitative analysis, the bifurcation method is one of the significant approaches for studying the structure of orbits in nonlinear dynamical systems. To apply the bifurcation method to the (2 + 1)-dimensional double-chain Deoxyribonucleic Acid system with beta derivative, the bifurcations of phase portraits and chaotic behaviors, combined with sensitivity and multi-stability analysis of this system, are examined.
View Article and Find Full Text PDFComput Methods Biomech Biomed Engin
February 2025
Zhejiang Weilian Technology Co., Ltd, Jiaxing, China.
Functional and esthetic results require accurate implant placement. We aimed to develop a predictive method for assessing dental implant accuracy, and to evaluate the cumulative system influence of surgical guides. A mathematical model was constructed to determine the influence of surface changes on a specific point, using Jacobian matrix expressions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!