Background: Aging is associated with slowed gait and old compared with young adults generally walk with greater positive hip work (H1) and reduced positive ankle work (A2). The role of exercise interventions on old adults' gait mechanics that underlie training-induced improvements in gait velocity is unclear. We examined the effects of lower extremity power training and detraining on old adults' gait kinetics.

Methods: As part of the Potsdam Gait Study (POGS), healthy old adults completed a no-intervention control period (69.1±4.4yrs, n=14) or a power training program followed by detraining (72.9±5.4yrs, n=15). We measured isokinetic knee extensor and plantarflexor power and measured hip, knee and ankle kinetics at habitual, fast and standardized walking speeds.

Results: Power training significantly increased isokinetic knee extensor power (25%), plantarflexor power (43%), and fast gait velocity (5.9%). Gait mechanics underlying the improved fast gait velocity included increases in hip angular impulse (29%) and H1 work (37%) and no changes in positive knee (K2) and A2 work. Detraining further improved fast gait velocity (4.7%) with reductions in H1 (-35%), and increases in K2 (36%) and A2 (7%).

Conclusion: Power training increased fast gait velocity in healthy old adults by increasing the reliance on hip muscle function and thus further strengthened the age-related distal-to-proximal shift in muscle function.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gaitpost.2016.12.024DOI Listing

Publication Analysis

Top Keywords

gait velocity
24
fast gait
20
power training
16
gait
12
mechanics underlie
8
lower extremity
8
power
8
extremity power
8
potsdam gait
8
gait study
8

Similar Publications

Introduction: Aging-related deficits in the physiological properties of skeletal muscles limit the control of dynamic stability during walking. However, the specific causal relationships between these factors remain unclear. This study evaluated the effects of aging-related deficits in muscle properties on dynamic stability during walking.

View Article and Find Full Text PDF

Impact of muscle fatigue on anticipatory postural adjustments during gait initiation.

Front Physiol

January 2025

Human Physiology Section of the Department of Pathophysiology and Transplantation, Università Degli Studi, Milano, Italy.

Introduction: Prolonged or strenuous exercise leads to a temporary decrease in muscle function and performance, which interferes with activity of both prime movers and postural muscles. This effect of fatigue has been reported both for single segment movements and for locomotion. However, little is known regarding the effects of fatigue on anticipatory postural adjustments (APAs) during gait initiation, a task in which the control of focal movement should be strictly coupled to a feedforward control of posture.

View Article and Find Full Text PDF

Objective: Spinal orthoses are the most viable conservative treatment for scoliosis, and additive manufacturing techniques have shown huge perspective in producing patient-specific braces, reducing material waste, and production times. This pilot study aimed at determining whether 3D-printed braces could induce advantages or disadvantages compared to conventional braces in terms of mobility and gait, and at quantitatively evaluating the effects of braces on mobility and gait.

Methods: Ten participants were included in the study, eight with adolescent idiopathic scoliosis and two with osteogenesis imperfecta.

View Article and Find Full Text PDF

: This study aimed to assess knee joint function in post-stroke patients using wireless motion sensors and functional tests. This type of evaluation may be important for improving gait quality. : The study included 25 post-stroke patients (age 53.

View Article and Find Full Text PDF

Introduction: We aimed to compare gait between individuals with Alzheimer's disease (AD), dementia with Lewy bodies (DLB), and cognitively unimpaired (CU) individuals and to evaluate the association between gait and regional amyloid beta (Aβ) burden in AD and DLB.

Methods: We included 420 participants (70 AD, 70 DLB, 280 CU) in the Mayo Clinic Study of Aging (MCSA). Gait was assessed using a pressure-sensor walkway.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!