Traditionally, computing the binding affinities of proteins to even relatively small and rigid ligands by free-energy methods has been challenging due to large computational costs and significant errors. Here, we apply a new molecular simulation acceleration method called MELD (Modeling by Employing Limited Data) to study the binding of stapled α-helical peptides to the MDM2 and MDMX proteins. We employ free-energy-based molecular dynamics simulations (MELD-MD) to identify binding poses and calculate binding affinities. Even though stapled peptides are larger and more complex than most protein ligands, the MELD-MD simulations can identify relevant binding poses and compute relative binding affinities. MELD-MD appears to be a promising method for computing the binding properties of peptide ligands with proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.6b00978DOI Listing

Publication Analysis

Top Keywords

binding poses
12
binding affinities
12
simulations identify
8
binding
8
identify binding
8
affinities stapled
8
stapled α-helical
8
α-helical peptides
8
peptides mdm2
8
mdm2 mdmx
8

Similar Publications

Post-COVID metabolic enzyme alterations in K18-hACE2 mice exacerbate alcohol-induced liver injury through transcriptional regulation.

Free Radic Biol Med

January 2025

Korea Mouse Phenotyping Center, Seoul National University, Seoul 08826, Republic of Korea; Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Interdisciplinary Program for Bioinformatics, Program for Cancer Biology and BIO-MAX/N-Bio Institute, Seoul National University, Seoul 08826, Republic of Korea. Electronic address:

Article Synopsis
  • COVID-19, caused by SARS-CoV-2, poses serious global health risks, including the potential for secondary liver injury related to metabolic enzyme changes.
  • This study explores how prior infection with SARS-CoV-2 affects alcohol-induced liver damage, using transgenic mice that express human ACE2.
  • Results showed that infected mice experienced worsened liver injury after alcohol consumption, with alterations in metabolic enzymes and increased levels of a toxic alcohol byproduct, indicating a complex interaction between COVID-19 and alcohol effects on the liver.
View Article and Find Full Text PDF

Interfacial adsorption behavior of amine-functionalized MCM-41 for Mo(VI) capture from aqueous solution.

Environ Res

January 2025

School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou 450001, China; The Key Lab of Critical Metals Minerals Supernormal Enrichment and Extraction, Ministry of Education, Zhengzhou 450001, China.

Given the environmental and ecological risks posed by wastewater bearing Mo, the characteristics and microscopic interactions of existing silica-based adsorbents have not been thoroughly investigated, highlighting the need to enhance the porosity and chemical interactions of these materials. Considering the effectiveness of amino groups in binding metal oxyanions, this study investigates the adsorption performance and mechanism of amino-functionalized MCM-41 for Mo(VI), with the goal of efficiently remediating Mo-contaminated wastewater. MCM-41 modified by amino group retains its original structure and mesoporous characteristics while featuring a positively charged surface and chemically bonded amino groups.

View Article and Find Full Text PDF
Article Synopsis
  • Ebola virus (EBOV) is a highly deadly RNA virus that currently lacks effective treatments or vaccines, necessitating the urgent need for new therapeutic solutions.
  • In this study, researchers used in silico methods to evaluate natural products from traditional Chinese medicine against four critical EBOV proteins, employing molecular docking to assess their potential effectiveness.
  • The findings identified eight promising compounds with strong inhibitory effects on EBOV proteins, indicating their potential as antiviral agents due to their favorable interaction with protein residues and acceptable pharmacokinetic profiles.
View Article and Find Full Text PDF

Cooperative and Independent Functionality of tmRNA and SmpB in : A Multifunctional Exploration Beyond Ribosome Rescue.

Int J Mol Sci

January 2025

Pathogenesis and Control of Pathogenic Microorganisms Research Team, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China.

The trans-translation system, mediated by transfer-messenger RNA (tmRNA, encoded by the gene) and its partner protein SmpB, helps to release ribosomes stalled on defective mRNA and targets incomplete protein products for hydrolysis. Knocking out the and genes in various pathogens leads to different phenotypic changes, indicating that they have both cooperative and independent functionalities. This study aimed to clarify the functional relationships between tmRNA and SmpB in a pathogen that poses threats in aquaculture and human health.

View Article and Find Full Text PDF

P4HA3 depletion induces ferroptosis and inhibits colorectal cancer growth by stabilizing ACSL4 mRNA.

Biochem Pharmacol

January 2025

Department of General Surgery, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China; Department of General Surgery, Jiangnan University Medical Center, Wuxi, China. Electronic address:

Colorectal cancer (CRC) is a malignancy with high global incidence and mortality rates, posing a serious threat to human health. Despite favorable outcomes following early detection and surgical intervention, the asymptomatic nature of CRC often results in delayed diagnoses, limiting surgical treatment options. Furthermore, effective therapeutic drugs for CRC remain lacking in clinical practice, highlighting an urgent need to identify novel therapeutic targets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!