Improved Performance of DNA Microarray Multiplex Hybridization Using Probes Anchored at Several Points by Thiol-Ene or Thiol-Yne Coupling Chemistry.

Bioconjug Chem

Interuniversitary Research Institute for Molecular Recognition and Technological Development (IDM), Chemistry Department, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.

Published: February 2017

Nucleic acid microarray-based assay technology has shown lacks in reproducibility, reliability, and analytical sensitivity. Here, a new strategy of probe attachment modes for silicon-based materials is built up. Thus, hybridization ability is enhanced by combining thiol-ene or thiol-yne click chemistry reactions with a multipoint attachment of polythiolated probes. The viability and performance of this approach was demonstrated by specifically determining Salmonella PCR products up to a 20 pM sensitivity level.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.bioconjchem.6b00624DOI Listing

Publication Analysis

Top Keywords

thiol-ene thiol-yne
8
improved performance
4
performance dna
4
dna microarray
4
microarray multiplex
4
multiplex hybridization
4
hybridization probes
4
probes anchored
4
anchored points
4
points thiol-ene
4

Similar Publications

The present work reports on the preparation, characterization, and evaluation of a set of novel triphenyl-modified silica-based stationary phases without and with embedded ion-exchange sites for mixed-mode liquid chromatography. The three synthesized triphenyl phases differed in additionally incorporated ion-exchange sites. In one embodiment, allyltriphenylsilane was bonded to thiol-modified silica by thiol-ene click reaction, leading to particles with no ion-exchange sites.

View Article and Find Full Text PDF

Click Chemistry for Well-Defined Graft Copolymers.

Polymers (Basel)

November 2024

Department of Applied Chemistry, Chemical Engineering, and Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510, Yamagata, Japan.

Graft copolymers have gained significant importance in various fields due to their tunable functionality and well-defined architecture. However, there are still limitations due to the compatibility of monomers and functional groups depending on the polymerization mode. Click chemistry has solved this problem through its ability to easily and quantitatively link a wide range of polymers and functional groups.

View Article and Find Full Text PDF

Photo-Clickable Triazine-Trione Thermosets as Promising 3D Scaffolds for Tissue Engineering Applications.

Adv Healthc Mater

October 2024

School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Department of Fibre and Polymer Technology, Division of Coating Technology, KTH Royal Institute of Technology, Teknikringen 56, Stockholm, SE-100 44, Sweden.

There is an overwhelming demand for new scaffolding materials for tissue engineering (TE) purposes. Polymeric scaffolds have been explored as TE materials; however, their high glass transition state (T) limits their applicability. In this study, a novel materials platform for fabricating TE scaffolds is proposed based on solvent-free two-component heterocyclic triazine-trione (TATO) formulations, which cure at room temperature via thiol-ene/yne photochemistry.

View Article and Find Full Text PDF

Modular Synthesis of PEG-Dendritic Block Copolymers by Thermal Azide-Alkyne Cycloaddition with Internal Alkynes and Evaluation of their Self-Assembly for Drug Delivery Applications.

Biomacromolecules

May 2024

Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, Santiago de Compostela 15782, Spain.

Linear-dendritic block copolymers assemble in solution due to differences in the solubility or charge properties of the blocks. The monodispersity and multivalency of the dendritic block provide unparalleled control for the design of drug delivery systems when incorporating poly(ethylene glycol) (PEG) as a linear block. An accelerated synthesis of PEG-dendritic block copolymers based on the click and green chemistry pillars is described.

View Article and Find Full Text PDF

Ionic liquids (ILs) have emerged as a new class of materials, displaying a unique capability to self-assemble into micelles, liposomes, liquid crystals, and microemulsions. Despite evident interest, advancements in the controlled formation of amphiphilic ILs remain in the early stages. Taking inspiration from nature, we introduced the concept of lipid-like (or lipid-inspired) ILs more than a decade ago, aiming to create very low-melting, highly lipophilic ILs that are potentially bio-innocuous - a combination of attributes that is frequently antithetical but highly desirable from several application-specific standpoints.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!