Chorioamnionitis is associated with preterm labor. Leukocytes infiltrate infected tissue and secrete hydrogen peroxide (H2O2) and other reactive oxygen products as part of their bactericidal activity. We have therefore investigated the effect of H2O2 on activity of in vitro uteri from pregnant rats. Uteri from 18-day pregnant rats exposed to H2O2 showed a dose-dependent increase in both contractile activity and production of prostaglandins (PG) E2 and F2 alpha compared to untreated controls. The antioxidant butylated hydroxy anisole (BHA) inhibited the H2O2-induced uterine activity. Furthermore, BHA inhibited contractions and PG production from spontaneously contracting uteri from 21-day pregnant rats. H2O2 increased chemiluminescence of uterine tissue, an index of oxygen or lipid radical formation, whereas BHA inhibited this effect. The BHA inhibition of uterine activity was reversed by addition of PGE2 to the incubation chamber. These data support the hypothesis that reactive oxygen can regulate PG production by the uterus and suggests a role for reactive oxygen in infection-induced labor and perhaps normal term labor as well.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1095/biolreprod41.1.98 | DOI Listing |
Climacteric
January 2025
Department of Gynecology and Obstetrics, Guizhou Provincial People's Hospital, Guiyang, China.
Objective: For patients with contraindications to hormone therapy, the absence of effective treatments for ovarian dysfunction post chemotherapy represents a critical issue requiring resolution. Local administration of mitochondria may enhance ovarian function in premature ovarian insufficiency (POI) by ameliorating diminished mitochondrial activity. Nevertheless, there is a paucity of literature on the efficacy of mitochondrial transplantation through intravenous injection, a less invasive and more convenient method than local injection, for the improvement of ovarian function in POI following chemotherapy.
View Article and Find Full Text PDFSmall
January 2025
Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China.
Diabetic ulcers (DUs) are characterized by a microenvironment with high oxidative stress, high blood glucose levels, and recalcitrant bacterial infections. This microenvironment is accompanied by long-term suppression of endogenous antioxidant systems, which makes their clinical management extremely challenging. To address this issue, a hybridized novel gold-palladium (AuPd) nanoshell of the injectable/injectable hydrogel system UiO/AuPd/BNN6/PEG@Gel (UAPsBP@Gel) is developed.
View Article and Find Full Text PDFCNS Neurol Disord Drug Targets
January 2025
School of Medicine, Foshan University, Foshan, 528000, China.
Introduction: Neuroinflammation derived from the activation of the microglia is considered a vital pathogenic factor of Alzheimer's Disease (AD). T-006, a tetramethylpyrazine derivative, has been found to alleviate cognitive deficits via inhibiting tau expression and phosphorylation in AD transgenic mouse models. Recently, T-006 has been proven to dramatically decrease the levels of total Amyloid β (Aβ) peptide and Glial Fibrillary Acidic Protein (GFAP) and suppress the expression of ionized calcium binding adaptor molecule-1 (Iba-1) in APP/PS1 mice.
View Article and Find Full Text PDFCurr Drug Targets
January 2025
Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar (M.P.) 470003, India.
Breast cancer remains the second most prevalent cancer among women in the United States. Despite advancements in surgical, radiological, and chemotherapeutic techniques, multidrug resistance continues to pose significant challenges in effective treatment. Combination chemotherapy has emerged as a promising approach to address these limitations, allowing multiple drugs to target malignancies via distinct mechanisms of action.
View Article and Find Full Text PDFIn biological systems, heme-copper oxidase (HCO) enzymes play a crucial role in the oxygen reduction reaction (ORR), where the pivotal O-O bond cleavage of the (heme)Fe-peroxo-Cu intermediate is facilitated by active-site (peroxo core) hydrogen bonding followed by proton-coupled electron transfer (PCET) from a nearby (phenolic) tyrosine residue. A useful approach to comprehend the fundamental relationships among H-bonding/proton/H-atom donors and their abilities to induce O-O bond homolysis involves the investigation of synthetic, bioinspired model systems where the exogenous substrate properties (such as p and bond dissociation energy (BDE)) can be systematically altered. This report details the reactivity of a heme-peroxo-copper HCO model complex (LS-4DCHIm) toward a series of substituted catechol substrates that span a range of p and O-H bond BDE values, exhibiting different reaction mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!