An efficient one-step domestication method with mixed electron acceptors and short-time post-aeration was developed for the enrichment culture of denitrifying phosphorus removal sludge. The acclimation time, performance of nitrogen and phosphorus simultaneous removal and microbial community structure were investigated to reveal the difference among the obtained phosphorus removal sludge using different acclimation ways. Results showed that the proposed method with optimal proportion of nitrite and nitrate could significantly shorten domestication time (28 days) compared with the traditional two-step method (60 days), but exerted nearly no influence on the removal efficiency of nitrogen and phosphorus. High-throughput sequencing revealed that similar microbial community structure of DPAOs sludge was obtained with different acclimation methods. Compared with seed sludge, microbial community shifted obviously, and the dominant microbial population of Dechloromonas-related phosphorus removal bacteria increased significantly. It could be inferred that the appropriate concentration of nitrite was conducive to the rapid enrichment of DPAOs under alternative anaerobic/anoxic operation. Meanwhile, anaerobic/oxic condition was favorable for the enrichment of Candidatus Accumulibacter-related phosphorus removal organisms, and short-time post-aeration in the proposed method could reduce the potential public health hazard.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09593330.2016.1278276DOI Listing

Publication Analysis

Top Keywords

phosphorus removal
20
microbial community
16
removal sludge
12
sludge acclimation
12
enrichment culture
8
culture denitrifying
8
denitrifying phosphorus
8
sludge microbial
8
short-time post-aeration
8
nitrogen phosphorus
8

Similar Publications

The selection of suitable raw materials as adsorbents is a key factor in effectively removing phosphorus from water. As an industrial by-product, soda residue exhibits high porosity and surface area, which can effectively adsorb pollutants. Magnetic lanthanum-iron soda residue (La-Fe-CSR) was synthesized using the co-precipitation method, and its characterization and mechanism for removing phosphate were thoroughly investigated.

View Article and Find Full Text PDF

Increasing toxic metal pollution in the aquatic ecosystem since the industrial revolution produces serious environmental challenges and has raised critical questions of ecological and human health implications. As a typical aquatic plant, Nasturtium officinale (N. officinale) has drawn significant attention due to its remarkable accumulation of heavy metals and other harmful substances from polluted water.

View Article and Find Full Text PDF

Bioremediation is widely recognized as a promising and efficient approach for the elimination of Cd from contaminated paddy soils. However, the Cd removal efficacy achieved through this method remains unsatisfactory and is accompanied by a marginally higher cost. Cysteine has the potential to improve the bioleaching efficiency of Cd from soils and decrease the use cost since it is green, acidic and has a high Cd affinity.

View Article and Find Full Text PDF

Mechanically Triggered Protein Desulfurization.

J Am Chem Soc

January 2025

New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China.

The technology of native chemical ligation and postligation desulfurization has greatly expanded the scope of modern chemical protein synthesis. Here, we report that ultrasonic energy can trigger robust and clean protein desulfurization, and we developed an ultrasound-induced desulfurization (USID) strategy that is simple to use and generally applicable to peptides and proteins. The USID strategy involves a simple ultrasonic cleaning bath and an easy-to-use and easy-to-remove sonosensitizer, titanium dioxide.

View Article and Find Full Text PDF

Advanced treatment of first flush roof runoff via a dry-wet polymorphic constructed wetland system: Performance and mechanistic insights.

Environ Res

January 2025

Key Lab of Northwest Water Resource, Environment, and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.

Controlling runoff pollution is crucial to improving ecological environments in the context of urbanization and climate change. However, a significant research gap remains in the treatment and reuse of roof runoff, particularly during the first flush. To address this, a novel dry-wet polymorphic constructed wetland (DWP-CW) system was developed to purify first flush runoff efficiently and reliably.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!