We present a combination of pulsed optical excitation and scanning tunneling microscopy with a highly flexible pulse generation method. A high frequency arbitrary wave generator drives a gigahertz electro-optical modulator, which processes a continuous-wave laser beam of a low-noise laser diode into the desired wave shape. For pump-probe excitation we generate optical pulse series in an all-electronic way. Thereby we can easily adapt parameters like pulse amplitude, width, or repetition cycle to the demands of the experiment. This setup is used to study different dynamic processes at the GaAs(110) surface. Separating thermally induced effects from electrically induced effects allows us to quantify the thermal contribution of the optical excitation in STM experiments. Time-resolved decay spectra of the photo-generated electron-hole pairs demonstrate the nanoscale spatial resolution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4971189 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!