Proatherogenic effects of 4-hydroxynonenal.

Free Radic Biol Med

Inserm UMR-1048, France; University of Toulouse, Faculty of Medicine, Biochemistry Dept, Toulouse, France; CHU Toulouse, Rangueil, Toulouse, France.

Published: October 2017

4-hydroxy-2-nonenal (HNE) is a α,β-unsaturated hydroxyalkenal generated by peroxidation of n-6 polyunsaturated fatty acid. This reactive carbonyl compound exhibits a huge number of biological properties that result mainly from the formation of HNE-adducts on free amino groups and thiol groups in proteins. In the vascular system, HNE adduct accumulation progressively leads to cellular dysfunction and tissue damages that are involved in the progression of atherosclerosis and related diseases. HNE contributes to the atherogenicity of oxidized LDL, by forming HNE-apoB adducts that deviate the LDL metabolism to the scavenger receptor pathway of macrophagic cells, and lead to the formation of foam cells. HNE activates transcription factors (Nrf2, NF-kappaB) that (dys)regulate various cellular responses ranging from hormetic and survival signaling at very low concentrations, to inflammatory and apoptotic effects at higher concentrations. Among a variety of cellular targets, HNE can modify signaling proteins involved in atherosclerotic plaque remodeling, particularly growth factor receptors (PDGFR, EGFR), cell cycle proteins, mitochondrial and endoplasmic reticulum components or extracellular matrix proteins, which progressively alters smooth muscle cell proliferation, angiogenesis and induces apoptosis. HNE adducts accumulate in the lipidic necrotic core of advanced atherosclerotic lesions, and may locally contribute to macrophage and smooth muscle cell apoptosis, which may induce plaque destabilization and rupture, thereby increasing the risk of athero-thrombotic events.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2016.12.038DOI Listing

Publication Analysis

Top Keywords

smooth muscle
8
muscle cell
8
hne
6
proatherogenic effects
4
effects 4-hydroxynonenal
4
4-hydroxynonenal 4-hydroxy-2-nonenal
4
4-hydroxy-2-nonenal hne
4
hne αβ-unsaturated
4
αβ-unsaturated hydroxyalkenal
4
hydroxyalkenal generated
4

Similar Publications

Notably, the C-X-C Motif Chemokine Ligand 12/C-X-C Chemokine Receptor Type 4 (CXCL12/CXCR4) signalling pathway's activation is markedly increased in a mouse model of abdominal aortic aneurysms (AAA). Nonetheless, the precise contribution of this pathway to AAA development remains to be elucidated. The AAA mouse model was induced by local incubation with elastase and oral administration of β-aminopropionitrile.

View Article and Find Full Text PDF

Background: Preclinical studies have documented the role of alpha-adrenergic agonists in myometrial contraction. Phenylephrine is frequently used to prevent and treat post-spinal hypotension during cesarean delivery. We hypothesized phenylephrine would reduce postpartum blood loss due to alpha-1 receptor-mediated uterine and vascular smooth muscle contraction.

View Article and Find Full Text PDF

Kangfuxin solution alleviates esophageal stenosis after endoscopic submucosal dissection: A natural ingredient strategy.

World J Gastroenterol

January 2025

Department of Spleen and Stomach Diseases, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, Sichuan Province, China.

Background: Esophageal stricture ranks among the most significant complications following endoscopic submucosal dissection (ESD). Excessive fibrotic repair is a typical pathological feature leading to stenosis after ESD.

Aim: To examine the effectiveness and underlying mechanism of Kangfuxin solution (KFX) in mitigating excessive fibrotic repair of the esophagus post-ESD.

View Article and Find Full Text PDF

Gallbladder-derived retinoic acid signalling drives reconstruction of the damaged intrahepatic biliary ducts.

Nat Cell Biol

January 2025

State Key laboratory of Genetic Engineering, School of Life Sciences, Liver Cancer Institute of Zhongshan Hospital, Fudan University, Shanghai, China.

Severe damage to the intrahepatic biliary duct (IHBD) network occurs in multiple human advanced cholangiopathies, such as primary sclerosing cholangitis, biliary atresia and end-stage primary biliary cholangitis. Whether and how a severely damaged IHBD network could reconstruct has remained unclear. Here we show that, although the gallbladder is not directly connected to the IHBD, there is a common hepatic duct (CHD) in between, and severe damage to the IHBD network induces migration of gallbladder smooth muscle cells (SMCs) to coat the CHD in mouse and zebrafish models.

View Article and Find Full Text PDF

Programmable embedded bioprinting for one-step manufacturing of arterial models with customized contractile and metabolic functions.

Trends Biotechnol

January 2025

State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, People's Republic of China; School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China. Electronic address:

Replicating the contractile function of arterial tissues in vitro requires precise control of cell alignment within 3D structures, a challenge that existing bioprinting techniques struggle to meet. In this study, we introduce the voxel-based embedded construction for tailored orientational replication (VECTOR) method, a voxel-based approach that controls cellular orientation and collective behavior within bioprinted filaments. By fine-tuning voxel vector magnitude and using an omnidirectional printing trajectory, we achieve structural mimicry at both the macroscale and the cellular alignment level.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!