This study was aimed at selecting purple non-sulfur bacteria (PNSB) isolated from various paddy fields, including Cd- and Zn-contaminated paddy fields, based on their biofertilizer properties. Among 235 PNSB isolates, strain TN110 was most effective in plant growth-promoting substance (PGPS) production, releasing 3.2 mg/L of [Formula: see text] , 4.11 mg/L of 5-aminolevulinic acid (ALA) and 3.62 mg/L of indole-3-acetic acid (IAA), and reducing methane emission up to 80%. This strain had nifH, vnfG and anfG, which are the Mo, V and Fe nitrogenase genes encoded for key enzymes in nitrogen fixation under different conditions. This strain provided 84% and 55% removal of Cd and Zn, respectively. Another isolate, TN414, not only produced PGPS (1.30 mg/L of [Formula: see text] , 0.94 mg/L of ALA and 0.65 mg/L of IAA), but was also efficient in removing both Cd and Zn at 72% and 74%, respectively. Based on 16S rDNA sequencing, strain TN110 was identified as Rhodopseudomonas palustris, while strain TN414 was Rubrivivax gelatinosus. A combination of TN110 and TN414 could potentially provide a biofertilizer, which is a greener alternative to commercial/chemical fertilizers and an agent for bioremediation of heavy metals and greenhouse gas mitigation in paddy fields.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.resmic.2016.12.001DOI Listing

Publication Analysis

Top Keywords

paddy fields
16
purple non-sulfur
8
non-sulfur bacteria
8
isolated paddy
8
greenhouse gas
8
gas mitigation
8
strain tn110
8
[formula text]
8
strain
5
characterizations purple
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!