By investigating metapopulation fitness, we present analytical expressions for the selection gradient and conditions for convergence stability and evolutionary stability in Wright's island model in terms of fecundity function. Coefficients of each derivative of fecundity function appearing in these conditions have fixed signs. This illustrates which kind of interaction promotes or inhibits evolutionary branching in spatial models. We observe that Taylor's cancellation result holds for any fecundity function: Not only singular strategies but also their convergence stability is identical to that in the corresponding well-mixed model. We show that evolutionary branching never occurs when the dispersal rate is close to zero. Furthermore, for a wide class of fecundity functions (including those determined by any pairwise game), evolutionary branching is impossible for any dispersal rate if branching does not occur in the corresponding well-mixed model. Spatial structure thus often inhibits evolutionary branching, although we can construct a fecundity function for which evolutionary branching only occurs for intermediate dispersal rates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtbi.2016.12.019 | DOI Listing |
BMC Plant Biol
January 2025
Chengdu Botanical Garden, Chengdu Park Urban Plant Science Research Institute, Chengdu, 610083, Sichuan, China.
Background: Ginkgo biloba L., an iconic living fossil, challenges traditional views of evolutionary stasis. While nuclear genomic studies have revealed population structure across China, the evolutionary patterns reflected in maternally inherited plastomes remain unclear, particularly in the Sichuan Basin - a potential glacial refugium that may have played a crucial role in Ginkgo's persistence.
View Article and Find Full Text PDFGene
January 2025
Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Kitaku, Tsushimanaka, Okayama 700-8530, Japan; Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 3-1-1 Kitaku, Tsushimanaka, Okayama 700-8530, Japan. Electronic address:
Bird contour feathers exhibit a complex hierarchical structure composed of a rachis, barbs, and barbules, with barbules playing a crucial role in maintaining feather structure and function. Understanding the molecular mechanisms underlying barbule formation is essential for advancing our knowledge of avian biology and evolution. In this study, we identified a novel gene, pennaceous barbule cell factor (PBCF), using microarray analysis, RT-PCR, and in situ hybridization.
View Article and Find Full Text PDFMol Phylogenet Evol
January 2025
Autonomous University of Barcelona, Systematics and Evolution of Vascular Plants (UAB) - Associated Unit to CSIC by IBB - Cerdanyola del Vallès, Spain.
Widely distributed plant genera offer insights into biogeographic processes and biodiversity. The Carduus-Cirsium group, with over 600 species in eight genera, is diverse across the Holarctic regions, especially in the Mediterranean Basin, Southwest Asia, Japan, and North America. Despite this diversity, evolutionary and biogeographic processes within the group, particularly for the genus Cirsium, remain underexplored.
View Article and Find Full Text PDFNat Commun
January 2025
Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.
The emergence of the Omicron lineage represented a major genetic drift in SARS-CoV-2 evolution. This was associated with phenotypic changes including evasion of pre-existing immunity and decreased disease severity. Continuous evolution within the Omicron lineage raised concerns of potential increased transmissibility and/or disease severity.
View Article and Find Full Text PDFEnviron Microbiol
January 2025
Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
The Hepatincolaceae (Alphaproteobacteria) are a group of bacteria that inhabit the gut of arthropods and other ecdysozoans, associating extracellularly with microvilli. Previous phylogenetic studies, primarily single-gene analyses, suggested their relationship to the Holosporales, which includes intracellular bacteria in protist hosts. However, the genomics of Hepatincolaceae is still in its early stages.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!