The planet's mean air and ocean temperatures have been rising over the last century because of increasing greenhouse gas (GHG) emissions. These changes have substantial effects on the epidemiology of infectious diseases. We describe direct and indirect processes linking climate change and infectious diseases in livestock with reference to specific case studies. Some of the studies are used to show a positive association between temperature and expansion of the geographical ranges of arthropod vectors (e.g. Culicoides imicola, which transmits bluetongue virus) while others are used to illustrate an opposite trend (e.g. tsetse flies that transmit a range of trypanosome parasites in sub-Saharan Africa). We further describe a positive association between extreme events: droughts and El Niño/southern oscillation (ENSO) weather patterns and Rift Valley fever outbreaks in East Africa and some adaptation practices used to mitigate the impacts of climate change that may increase risk of exposure to infectious pathogens. We conclude by outlining mitigation and adaptation measures that can be used specifically in the livestock sector to minimize the impacts of climate change-associated livestock diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.prevetmed.2016.11.019DOI Listing

Publication Analysis

Top Keywords

climate change
12
livestock diseases
8
infectious diseases
8
positive association
8
impacts climate
8
effects climate
4
change occurrence
4
occurrence distribution
4
livestock
4
distribution livestock
4

Similar Publications

Assessing Changes in Permethrin Toxicity to Juvenile Inland Silversides (Menidia beryllina) Under Different Temperature Scenarios.

Arch Environ Contam Toxicol

January 2025

Center for Fisheries, Aquaculture and Aquatic Sciences, School of Biological Sciences, Southern Illinois University, Carbondale, IL, 62901, USA.

Aquatic systems are impacted by temperature fluctuations which can alter the toxicity of pesticides. Increased temperatures related to climate change have elevated pest activity, resulting in an escalation of pesticide use. One such pesticide class, pyrethroids, has replaced the use of several banned pesticides due to its low mammalian toxicity.

View Article and Find Full Text PDF

Climate change poses a significant threat to human health. Long-term climate effects on childhood asthma hospitalizations depend on the population's geographic region. These effects in tropical drylands are not well understood.

View Article and Find Full Text PDF

Characterising patterns of genetic diversity including evidence of local adaptation is relevant for predicting and managing species recovering from overexploitation in the face of climate change. Red abalone (Haliotis rufescens) is a species of conservation concern due to recent declines from overharvesting, disease and climate change, resulting in the closure of commercial and recreational fisheries. Using whole-genome resequencing data from 23 populations spanning their entire range (southern Oregon, USA, to Baja California, MEX) we investigated patterns of population connectivity and genotype-environment associations that would reveal local adaptation across the mosaic of coastal environments that define the California Current System (CCS).

View Article and Find Full Text PDF

Identifying populations at highest risk from climate change is a critical component of conservation efforts. However, vulnerability assessments are usually applied at the species level, even though intraspecific variation in exposure, sensitivity and adaptive capacity play a crucial role in determining vulnerability. Genomic data can inform intraspecific vulnerability by identifying signatures of local adaptation that reflect population-level variation in sensitivity and adaptive capacity.

View Article and Find Full Text PDF

Premise: The ability of plants to adapt or acclimate to climate change is inherently linked to their interactions with symbiotic microbes, notably fungi. However, it is unclear whether fungal symbionts from different climates have different impacts on the outcome of plant-fungal interactions, especially under environmental stress.

Methods: We tested three provenances of fungal inoculum (originating from dry, moderate or wet environments) with one host plant genotype exposed to three soil moisture regimes (low, moderate and high).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!