A series of 7H-benzo[7,8]chromeno[2,3-d]pyrimidin-8-amines 6a-t were synthesized as new potential antiproliferative agents. The in vitro antiproliferative activity evaluation of title compounds using MTT assay revealed that most compounds showed significant activity against tested cancer cell lines (A549, MOLT-4, and HeLa). The 2-fluoro-aniline derivatives 6e and 6l were the most active compounds against A549 and MOLT-4 cells, respectively. The benzylamine analog 6h showed superior activity against HeLa cells. However, compound 6l with IC values of 5.2-6.9 μM had the best profile of activity against all tested cell lines. The morphological and flow cytometric analyses showed that compound 6l can induce apoptosis in the MOLT-4 cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmech.2016.12.037 | DOI Listing |
ChemMedChem
January 2025
Lomonosov Moscow State University: Moskovskij gosudarstvennyj universitet imeni M V Lomonosova, Chemistry, RUSSIAN FEDERATION.
Light induced release of cisplatin from Pt(IV) prodrugs is a promising tool for precise spatiotemporal control over the antiproliferative activity of Pt-based chemotherapeutic drugs. A combination of light-controlled chemotherapy (PACT) and photodynamic therapy (PDT) in one molecule has the potential to overcome crucial drawbacks of both Pt-based chemotherapy and PDT via a synergetic effect. Herein we report green-light-activated Pt(IV) prodrug GreenPt with BODIPY-based photosentitizer in the axial position with an incredible high light response and singlet oxygen generation ability.
View Article and Find Full Text PDFInt J Oncol
February 2025
Department of Pathology, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center, 6229HX Maastricht, The Netherlands.
Human papillomavirus (HPV)‑positive and -negative head and neck squamous cell carcinoma (HNSCC) are often associated with activation of the phosphatidylinositol 3‑kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway due to mutations or amplifications in , loss of or activation of receptor tyrosine kinases. In HPV‑negative tumors, (encoding p16 protein) inactivation or (encoding Cyclin D1 protein) amplification frequently results in sustained cyclin‑dependent kinase (CDK) 4/6 activation. The present study aimed to investigate the efficacy of the CDK4/6 inhibitors (CDKi) palbociclib and ribociclib, and the PI3K/Akt/mTOR pathway inhibitors (PI3Ki) gedatolisib, buparlisib and alpelisib, in suppressing cell viability of HPV‑positive and ‑negative HNSCC cell lines.
View Article and Find Full Text PDFCurr Med Chem
January 2025
School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
Branched-chain amino acids (BCAAs) are essential amino acids for humans and play an indispensable role in many physiological and pathological processes. Branched-chain amino acid aminotransferase (BCAT) is a key enzyme that catalyzes the metabolism of BCAAs. BCAT is upregulated in many cancers and implicated in the development and progress of some other diseases, such as metabolic and neurological diseases; and therefore, targeting BCAT might be a potential therapeutic approach for these diseases.
View Article and Find Full Text PDFCytotechnology
February 2025
Department of Pharmacology and Toxicology, College of Pharmacy, Al-Nahrain University, Baghdad, Iraq.
Angiogenesis is an intricate pathway that involves the formation of new blood capillaries from old, functioning ones. Improper angiogenesis is a feature of numerous maladies, including malignancy and autoimmune disorders. Indole-related derivatives are believed to interfere with the mitotic spindle, inhibiting the multiplication, and invasion of cancerous human cells.
View Article and Find Full Text PDFJ Med Chem
January 2025
Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
Selective poly(ADP-ribose) polymerase 1 (PARP1) inhibitors not only exhibit antitumor efficacy but also offer the potential to mitigate the toxicities typically associated with broader PARP inhibition. In this study, we designed and synthesized a series of small molecules targeting highly selective PARP1 inhibitors. Among these, demonstrated excellent selectivity to PARP1 along with the capability to effectively cross the blood-brain barrier (BBB).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!