Cisplatinum may prove to be a valuable agent for the elimination of diseased cells in the bone marrow of patients with neuroblastoma. In this study, we measured the efficacy of cisplatinum on human neuroblastoma cell lines and on normal human bone marrow progenitors, GM-CFC and CFU-F. Data indicate that the therapeutic index of cisplatinum is high. We set up an experimental model consisting of a mixture of human bone marrow and human neuroblastoma cells in order to confirm these preliminary results in purging conditions. Results indicate that cisplatinum exhibits a high and specific tumoricidal property and appears to be valid in bone marrow purging.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2247099 | PMC |
http://dx.doi.org/10.1038/bjc.1989.307 | DOI Listing |
Turk J Haematol
January 2025
Tianjin Medical University General Hospital, Department of Hematology, Tianjin, P. R. China.
Objective: Immune-related pancytopenia (IRP) is characterized by autoantibody-mediated destruction or suppression of bone marrow cells, leading to pancytopenia. This study aimed to explore the role of TRAPPC4 (trafficking protein particle complex subunit 4) as a key autoantigen in IRP, including epitope identification and immune activation mechanisms.
Methods: A total of 90 participants were included in the study, divided into four groups: 30 newly diagnosed IRP patients, 25 IRP remission patients, 20 patients with control hematologic conditions (severe aplastic anemia [SAA] and myelodysplastic syndrome [MDS]), and 15 healthy controls.
Acta Biomater
January 2025
Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland; Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland. Electronic address:
Functional cartilaginous tissues can potentially be engineered by bringing together numerous microtissues (µTs) and allowing them to fuse and re-organize into larger, structurally organized grafts. The maturation level of individual microtissues is known to influence their capacity to fuse, however its impact on the long-term development of the resulting tissue remains unclear. The first objective of this study was to investigate the influence of the maturation state of human bone-marrow mesenchymal stem/stromal cells (hBM-MSCSs) derived microtissues on their fusion capacity and the phenotype of the final engineered tissue.
View Article and Find Full Text PDFStem Cells Dev
January 2025
Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
Autologous hematopoietic stem cell transplantation is used to restore bone marrow function after high-dose chemotherapy. For apheresis, granulocyte colony-stimulating factor (G-CSF) is standard of care, but obtaining sufficient stem cells can be challenging. Other mobilization agents include plerixafor and PEGylated G-CSF (PEG-G-CSF).
View Article and Find Full Text PDFBiomarkers
January 2025
Pediatric Intensive Care Unit, Hospital Sant Joan de Déu-University of Barcelona, Barcelona, Spain.
PurposeChimeric antigen receptor (CAR) T-cell CD19 therapy has changed the treatment paradigm for patients with relapsed/refractory B-cell acute lymphoblastic leukemia. It is frequently associated with potentially severe toxicities: cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS), and admission to PICU is often required. Some biomarkers seem to correlate with CRS severity.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, 1440 Canal Street, Downtown, New Orleans, LA 70112, USA.
Bone is a multifaceted tissue requiring orchestrated interplays of diverse cells within specialized microenvironments. Although significant progress has been made in understanding cellular and molecular mechanisms of component cells of bone, revealing their spatial organization and interactions in native bone tissue microenvironment is crucial for advancing precision medicine, as they govern fundamental signaling pathways and functional dependencies among various bone cells. In this study, we present the first integrative high-resolution map of human bone and bone marrow, using spatial and single-cell transcriptomics profiling from femoral tissue.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!