Separation and recovery of glass, plastic and indium from spent LCD panels.

Waste Manag

Department of Industrial Engineering, Information and Economics, University of L'Aquila, Via G. Gronchi 18, 67100 L'Aquila, Italy.

Published: February 2017

The present paper deals with physico-mechanical pre-treatments for dismantling of spent liquid crystal displays (LCDs) and further recovery of valuable fractions like plastic, glass and indium. After a wide experimental campaign, two processes were designed, tested and optimized. In the wet process, 20%, 15% and 40% by weight of the feeding panels are recovered as plastic, glass and indium concentrate, respectively. Instead, in the dry process, only two fractions were separated: around 11% and 85% by weight are recovered as plastic and glass/indium mixture. Indium, that concentrated in the -212μm fraction, was completely dissolved by sulphuric acid leaching (0.75molL HSO solution, 80°C, 10%vol HO, pulp density 10%wt/vol, leaching time 3h). 100% of indium can be extracted from the pregnant solution with 5%wt/vol Amberlite™ resin, at room temperature and pH 3 in 24h. Indium was thus re-extracted from the resin by means of a 2molL HSO solution, at room temperature and S/L of 40%wt/vol.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wasman.2016.12.030DOI Listing

Publication Analysis

Top Keywords

plastic glass
8
glass indium
8
recovered plastic
8
hso solution
8
room temperature
8
indium
6
separation recovery
4
recovery glass
4
plastic
4
glass plastic
4

Similar Publications

Guest-Molecule-Induced Glass-Crystal Transition in Organic-Inorganic Hybrid Antimony Halides.

Inorg Chem

January 2025

College of Chemistry and Materials Science, College of Environmental and Resource Sciences, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350007, China.

The glassy state of inorganic-organic hybrid metal halides combines their excellent optoelectronic properties with the outstanding processability of glass, showcasing unique application potential in solar devices, display technologies, and plastic electronics. Herein, by tailoring the organic cation from -phenylpiperazine to dimethylamine gradually, four types of zero-dimensional antimony halides are obtained with various optical and thermal properties. The guest water molecules in crystal (-phenylpiperazine)SbCl·Cl·5HO lead to the largest distortion of the Sb-halogen unit, resulting in the red emission different from the yellow emission of other compounds.

View Article and Find Full Text PDF

Upcycling polynorbornene derivatives into chemically recyclable multiblock linear and thermoset plastics.

Angew Chem Int Ed Engl

January 2025

Colorado State University, Chemistry and Biochemistry, 301 W. Pitkin Street, 215 UCB, 80523, United States, 80523, Fort Collins, UNITED STATES OF AMERICA.

Synthetic polymers have found widespread use with functional lifetimes from seconds to decades. However, the lack of end-of-life treatment for these plastics is causing a significant environmental and human health crisis due to their persistence and bioaccumulation. Upcycling post-consumer plastic waste to products with inherent recyclability is an attractive strategy to tackle this problem, as it can broaden the range of accessible materials and uncover unprecedented features while dealing with current plastic waste.

View Article and Find Full Text PDF

Polydopamine-encapsulated carbon dots to boost analytical performance for microplastics detection in fluorescence mode.

Mikrochim Acta

January 2025

School of Chemical Engineering and Technology, Hebei Key Laboratory of Functional Polymers, Hebei University of Technology, Beichen District, Xiping Road No. 5340, Tianjin, 300401, China.

A kind of sulfur-doped carbon dots was prepared which were encapsulated with polydopamine (S-CDs@PDA) that has fluorescence response on polyethylene (PE) microplastics (MPs). Modified membranes were constructed using S-CDs@PDA for MP detection. Through heating and vacuum filtration process, yellow emission from the modified membrane appeared because of the combination between S-CDs@PDA and PE MPs.

View Article and Find Full Text PDF

Commercial adhesives are petroleum-based thermoset networks or nonbiodegradable thermoplastic hot melts, making them ideal targets for replacement by biodegradable alternatives. Poly(3-hydroxybutyrate) (P3HB) is a biorenewable and biodegradable alternative to conventional plastics, but microbial P3HB, which has a stereoperfect stereomicrostructure, exhibits no adhesion. In this study, by elucidating the fundamental relationship between chemocatalytically engineered P3HB stereomicrostructures and adhesion properties, we found that biodegradable syndio-rich P3HB exhibits high adhesion strength and outperforms common commercial adhesives, whereas syndiotactic, isotactic, or iso-rich P3HB shows no measurable adhesion.

View Article and Find Full Text PDF

Fingermarks are important forensic evidence for identifying people. In this work, luminescent MOF [Eu(BDC)(HO)] (herein referred as EuBDC) was tested as a potential latent fingermark (LF) luminescent developer powder and its acute toxicity evaluated following OECD protocol 423. The results showed that the powder can develop groomed LF on materials such as leather, plastic, metal, glass, cardboard, and aluminum.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!