This study compares the physiological responses of systemic-to-pulmonary shunted single ventricle patients to pulsatile and continuous flow ventricular assist devices (VADs). Performance differences between pulsatile and continuous flow VADs have been clinically observed, but the underlying mechanism remains poorly understood. Six systemic-to-pulmonary shunted single ventricle patients (mean BSA=0.30m) were computationally simulated using a lumped-parameter network tuned to match patient specific clinical data. A first set of simulations compared current clinical implementation of VADs in single ventricle patients. A second set modified pulsatile flow VAD settings with the goal to optimize cardiac output (CO). For all patients, the best-case continuous flow VAD CO was at least 0.99L/min greater than the optimized pulsatile flow VAD CO (p=0.001). The 25 and 50mL pulsatile flow VADs exhibited incomplete filling at higher heart rates that reduced CO as much as 9.7% and 37.3% below expectations respectively. Optimization of pulsatile flow VAD settings did not achieve statistically significant (p<0.05) improvement to CO. Results corroborate clinical experience that continuous flow VADs produce higher CO and superior ventricular unloading in single ventricle patients. Impaired filling leads to performance degradation of pulsatile flow VADs in the single ventricle circulation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiomech.2016.12.003DOI Listing

Publication Analysis

Top Keywords

pulsatile flow
20
single ventricle
16
flow vad
16
ventricle patients
12
continuous flow
12
flow
8
flow ventricular
8
ventricular assist
8
assist devices
8
systemic-to-pulmonary shunted
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!