Structure and anticoagulant property of a sulfated polysaccharide isolated from the green seaweed Monostroma angicava.

Carbohydr Polym

Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China. Electronic address:

Published: March 2017

An anticoagulant-active polysaccharide PF2 was extracted with boiling water from the green seaweed Monostroma angicava, further purified by anion-exchange and size-exclusion chromatography. PF2 was a rhamnan-type sulfated polysaccharide with molecular weight of about 88.1kDa. Results of chemical and spectroscopic analyses demonstrated that PF2 consisted of→3)-α-l-Rhap-(1→ and →2)-α-l-Rhap-(1→residues, with partially branches at C-2 of→3)-α-l-Rhap-(1→residues. Sulfate groups were substituted at C-3 of →2)-α-l-Rhap-(1→ residues. The sulfated polysaccharide PF2 had a high anticoagulant action, and the mechanism of anticoagulant activity mediated by PF2 was mainly attributed to strong potentiation thrombin by heparin cofactor II. PF2 also exhibited weak effect on antithrombin-dependent thrombin or factor Xa inhibition. The fibrin(ogen)olytic activity and thrombolytic activity of PF2 were also evaluated. The investigation revealed that PF2 was a novel sulfated rhamnan differing from previously described sulfated polysaccharides from green seaweed and could be a potential anticoagulant polysaccharide.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2016.12.013DOI Listing

Publication Analysis

Top Keywords

sulfated polysaccharide
12
green seaweed
12
seaweed monostroma
8
monostroma angicava
8
pf2
8
polysaccharide pf2
8
sulfated
5
polysaccharide
5
structure anticoagulant
4
anticoagulant property
4

Similar Publications

This study provides a detailed characterization of the AA5083 aluminum alloy, surface, and interface over 6 months of immersion in seawater, employing techniques such as SEM/EDX, GIXRD, μ-Raman and XPS. The purpose was to evaluate the evolution of the biomineralization process that occurs on the Al-Mg alloy. By investigating the specific conditions that favor the in situ growth of layered double hydroxide (LDH) during seawater immersion as a result of biomineralization, this research provides insights into marine biomineralization, highlighting its potential as an innovative and sustainable strategy for corrosion protection.

View Article and Find Full Text PDF

A BMP-2 sustained-release scaffold accelerated bone regeneration in rats via the BMP-2 consistent activation maintained by a non-sulfate polysaccharide.

Biomed Mater

January 2025

School of Food Science and Technology, Dalian Polytechnic University, SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian 116034, People's Republic of China.

Bone morphogenetic protein 2 (BMP-2) and a polysaccharide (SUP) were embedded in the calcium phosphate cement (CPC) scaffold, and the bone repair ability was evaluated. The new scaffolds were characterized using x-ray diffraction, Fourier transform-infrared, scanning electron microscopy, and energy dispersive spectroscopy analyses. CPC-BMP2-SUPH scaffold promoted the BMP-2 release by 1.

View Article and Find Full Text PDF

Single-organelle visualization tracking natural glycosaminoglycans within mitochondria-lysosome crosstalk for inflammatory homeostasis.

Int J Biol Macromol

January 2025

School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China. Electronic address:

Glycosaminoglycans (GAGs), as natural products with diverse biological activities, play a significant role in regulating inflammatory homeostasis. Nevertheless, the mechanism underlying their intracellular anti-inflammatory properties remains unclear. Herein, we propose a single-organelle visualization tracking framework, leveraging an advanced fluorescent imaging technology combined with labeling methods to dynamically trace the subcellular regulatory mechanisms of GAGs in eliminating inflammatory markers, such as reactive oxygen species (ROS).

View Article and Find Full Text PDF

κ-Carrageenan tetrasaccharide ameliorates particulate matter-induced defects in skin hydration of human keratinocytes cells and skin barrier disorders.

Int J Biol Macromol

January 2025

College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China. Electronic address:

Urban air pollutants, mainly represented by PM containing organic and inorganic substances, can penetrate the human skin and trigger oxidative stress, potentially causing skin barrier damage and aging. κ-Carrageenan oligosaccharides as degradation products of natural sulfated polysaccharide have a great potential for skin moisturization as well as improving oxidative stress and inflammation. In this study, κ-carrageenan tetrasaccharide was obtained by enzymatic digestion of κ-carrageenan, and its role in alleviating particulate matter-induced inflammatory response in HaCaT keratinocyte cell line and skin barrier dysfunction was evaluated.

View Article and Find Full Text PDF

One of the biggest public health problems globally is that of iron deficiency anemia. The present research aimed to determine the effect of prebiotics along with iron fortification on iron biomarkers in female anemic rats as some evidence suggests that prebiotics convert increase the solubility of iron, thereby enhancing its absorption. A total of 126 Sprague Dawley rats were fed with sixteen different types of fortified feed containing prebiotics (Inulin + Galacto Oligosaccharides) and Iron Fortificants (Sodium Ferric Ethylenediaminetetraacetate + Ferrous Sulphate).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!