Somatic cell reprogramming by transcription factors and other modifiers such as microRNAs has opened broad avenues for the study of developmental processes, cell fate determination, and interplay of molecular mechanisms in signaling pathways. However, many of the mechanisms that drive nuclear reprogramming itself remain yet to be elucidated. Here, we analyzed the role of miR-29 during reprogramming in more detail. Therefore, we evaluated miR-29 expression during reprogramming of fibroblasts transduced with lentiviral OKS and OKSM vectors and we show that addition of c-MYC to the reprogramming factor cocktail decreases miR-29 expression levels. Moreover, we found that transfection of pre-miR-29a strongly decreased OKS-induced formation of GFP-colonies in MEF-cells from Oct4-eGFP reporter mouse, whereas anti-miR-29a showed the opposite effect. Furthermore, we studied components of two pathways which are important for reprogramming and which involve miR-29 targets: active DNA-demethylation and Wnt-signaling. We show that inhibition of Tet1, Tet2 and Tet3 as well as activation of Wnt-signaling leads to decreased reprogramming efficiency. Moreover, transfection of pre-miR-29 resulted in elevated expression of β-Catenin transcriptional target sFRP2 and increased TCF/LEF-promoter activity. Finally, we report that Gsk3-β is a direct target of miR-29 in MEF-cells. Together, our findings contribute to the understanding of the molecular mechanisms by which miR-29 influences reprogramming.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scr.2016.12.020DOI Listing

Publication Analysis

Top Keywords

reprogramming
9
molecular mechanisms
8
mir-29 expression
8
mir-29
6
microrna-29 impairs
4
impairs early
4
early phase
4
phase reprogramming
4
reprogramming process
4
process targeting
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!