A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Tunable Ultrafast Thermal Relaxation in Graphene Measured by Continuous-Wave Photomixing. | LitMetric

Hot electron effects in graphene are significant because of graphene's small electronic heat capacity and weak electron-phonon coupling, yet the dynamics and cooling mechanisms of hot electrons in graphene are not completely understood. We describe a novel photocurrent spectroscopy method that uses the mixing of continuous-wave lasers in a graphene photothermal detector to measure the frequency dependence and nonlinearity of hot-electron cooling in graphene as a function of the carrier concentration and temperature. The method offers unparalleled sensitivity to the nonlinearity, and probes the ultrafast cooling of hot carriers with an optical fluence that is orders of magnitude smaller than in conventional time-domain methods, allowing for accurate characterization of electron-phonon cooling near charge neutrality. Our measurements reveal that near the charge neutral point the nonlinear power dependence of the electron cooling is dominated by disorder-assisted collisions, while at higher carrier concentrations conventional momentum-conserving cooling prevails in the nonlinear dependence. The relative contribution of these competing mechanisms can be electrostatically tuned through the application of a gate voltage-an effect that is unique to graphene.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.117.257401DOI Listing

Publication Analysis

Top Keywords

graphene
6
cooling
6
tunable ultrafast
4
ultrafast thermal
4
thermal relaxation
4
relaxation graphene
4
graphene measured
4
measured continuous-wave
4
continuous-wave photomixing
4
photomixing hot
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!