The microtubule-associated protein Tau is an intrinsically unfolded, very soluble neuronal protein. Under still unknown circumstances, Tau protein forms soluble oligomers and insoluble aggregates that are closely linked to the cause and progression of various brain pathologies, including Alzheimer's disease. Previously we reported the development of liposome-based vaccines and their efficacy and safety in preclinical mouse models for tauopathy. Here we report the use of a liposomal vaccine for the generation of a monoclonal antibody with particular characteristics that makes it a valuable tool for fundamental studies as well as a candidate antibody for diagnostic and therapeutic applications. The specificity and affinity of antibody ACI-5400 were characterized by a panel of methods: (i) measuring the selectivity for a specific phospho-Tau epitope known to be associated with tauopathy, (ii) performing a combination of peptide and protein binding assays, (iii) staining of brain sections from mouse preclinical tauopathy models and from human subjects representing six different tauopathies, and (iv) evaluating the selective binding to pathological epitopes on extracts from tauopathy brains in non-denaturing sandwich assays. We conclude that the ACI-5400 antibody binds to protein Tau phosphorylated at S396 and favors a conformation that is typically present in the brain of tauopathy patients, including Alzheimer's disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5271481PMC
http://dx.doi.org/10.3233/JAD-160695DOI Listing

Publication Analysis

Top Keywords

monoclonal antibody
8
liposomal vaccine
8
protein tau
8
including alzheimer's
8
alzheimer's disease
8
tauopathy
6
antibody
5
protein
5
novel phospho-tau
4
phospho-tau monoclonal
4

Similar Publications

Tumor-induced osteomalacia (TIO) is a rare paraneoplastic syndrome caused by hypersecretion of fibroblast growth factor 23 (FGF23) by typically benign phosphaturic mesenchymal tumors (PMTs). FGF23 excess causes chronic hypophosphatemia through renal phosphate losses and decreased production of 1,25-dihydroxy-vitamin-D. TIO presents with symptoms of chronic hypophosphatemia including fatigue, bone pain, weakness, and fractures.

View Article and Find Full Text PDF

Nanobody-based indirect competitive ELISA for the detection of aflatoxin M1 in dairy products.

Sci Rep

January 2025

Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China.

Aflatoxin M1 (AFM1) is known to be carcinogenic, mutagenic, and teratogenic and poses a serious threat to food safety and human health, which makes its surveillance critical. In this study, an indirect competitive ELISA (icELISA) based on a nanobody (Nb M4) was developed for the sensitive and rapid detection of AFM1 in dairy products. In our previous work, Nb M4 was screened from a Bactrian-camel-immunized phage-displayed library.

View Article and Find Full Text PDF

Carbapenem-resistant Klebsiella pneumoniae poses a severe risk to global public health, necessitating the immediate development of novel therapeutic strategies. The current study aimed to investigate the effectiveness of the green algae Arthrospira maxima (commercially known as Spirulina) both in vitro and in vivo against carbapenem-resistant K. pneumoniae.

View Article and Find Full Text PDF

Malaria monoclonals block brain binding.

Trends Parasitol

January 2025

Department of Infectious Diseases, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia; Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia.

In Plasmodium falciparum malaria, infected cells accumulate in blood vessels of organs, including the brain. Recently, Reyes et al. identified monoclonal antibodies that stop infected cells from binding to the endothelial protein C receptor (EPCR) in a model of brain blood vessels.

View Article and Find Full Text PDF

Protein concentration and analyzing charge variants in a co-formulation comprising three monoclonal antibodies: A cation-exchange chromatography approach.

Int J Pharm

January 2025

BioDev Drug Product Development Department, WuXi Biologics, 190 Hedan Road, Shanghai 200131, China. Electronic address:

In the realm of therapeutic antibodies, co-formulations comprising two or more monoclonal antibodies (mAbs) have emerged as a promising strategy, offering enhanced treatment efficacy, improved efficiency, and prolonged intellectual property protection. These advantages have sparked significant interest among both patients and pharmaceutical companies. However, the quantification and analysis of individual mAbs within such co-formulations pose a substantial challenge due to their similar physicochemical properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!