Graphene Nanopores for Electronic Recognition of DNA Methylation.

J Phys Chem B

Beckman Institute for Advanced Science and Technology, ‡Department of Electrical and Computer Engineering, and §Department of Physics, University of Illinois, Urbana, Illinois 61801, United States.

Published: April 2017

We investigate theoretically the ability of graphene nanopore membranes to detect methylated sites along a DNA molecule by electronic sheet current along the two-dimensional (2D) materials. Special emphasis is placed on the detection sensitivity changes due to pore size, shape, position, and the presence of defects around the nanopore in a membrane with constricted geometry. Enhanced sensitivity for detecting methylated CpG sites, labeled by methyl-CpG binding domain (MBD) proteins along a DNA molecule, is obtained for electronic transport through graphene midgap states caused by the constriction. A large square deviation from the graphene conductance with respect to the open nanopore is observed during the translocation of MBD proteins. This approach exhibits superior resolution in the detection of multiple methylated sites along the DNA compared to conventional ionic current blockade techniques.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.6b11040DOI Listing

Publication Analysis

Top Keywords

methylated sites
8
sites dna
8
dna molecule
8
molecule electronic
8
mbd proteins
8
graphene
4
graphene nanopores
4
nanopores electronic
4
electronic recognition
4
dna
4

Similar Publications

Since water is both a product and a common reactant impurity in the (partial) methanol oxidation to methyl formate (MeFo) on gold, its effect on the isothermal selectivity to methyl formate was investigated under well-defined single-collision conditions employing pulsed molecular beam experiments and in situ IRAS measurements. Both a flat Au(111) and a stepped Au(332) surface were used as model catalysts to elucidate how water affects the reactivity of low-coordinated step sites as compared to (111) terrace sites employing a range of reaction conditions. The interactions of water with methanol/methoxy as well as with oxygen species are addressed.

View Article and Find Full Text PDF

Photocatalytic methane oxidation under mild conditions using single-atom catalysts remains an advanced technology. In this work, gold single atoms (Au SAs) were introduced onto TiO nanostructures using a simple method. The resulting performance demonstrated effective conversion of methane into H and C products at room temperature.

View Article and Find Full Text PDF

Background: Urothelial carcinoma (UC) is a common malignancy worldwide. Aberrant DNA methylation is implicated in UC carcinogenesis. This study sought to delineate the DNA methylation landscape in UC and identify DNA methylation-based biomarkers for early detection of UC.

View Article and Find Full Text PDF

Association between epigenome-wide DNA methylation changes and early neurodevelopment in preschool children: Evidence from a former impoverished county in Central China.

Gene

January 2025

Department of Maternal and Child Health School of Public Health Tongji Medical College Huazhong University of Science and Technology Wuhan China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China. Electronic address:

Background: Existing epigenome-wide association study (EWAS) investigating the association between DNA methylation (DNAm) and child neurodevelopment have been predominantly conducted within Western populations, and yielded inconsistent results, leading to a significant gap within non-Western setting, particularly in resource-limited rural areas of Central China.

Objectives: To investigate the association between altered epigenome-wide DNAm and neurodevelopment in preschool children from resource-limited rural areas of Central China.

Methods: This case-control study involved 64 preschoolers.

View Article and Find Full Text PDF

Endometrial cancer [EC] is the fourth most common cancer in women in the United States. Stark racial disparities are present in EC outcomes in which Black women have significantly higher EC-related mortality than White women. The social and biologic factors that contribute to these disparities are complex, and may include racial differences in epigenetic landscapes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!