The aqueous bulk diffusivities of several near-spherical (icosahedral) and nonspherical (tailed) bacterial viruses were experimentally determined by measuring their flux across large pore membranes and using dynamic light scattering, with excellent agreement between values measured using the two techniques. For the icosahedral viruses, good agreement was also found between measured diffusivity values and values predicted with the Stokes-Einstein equation. However, when the tailed viruses were approximated as spheres, poor agreement was found between measured values and Stokes-Einstein predictions. The shape of the tailed organisms was incorporated into two modeling approaches used to predict diffusivity. Model predictions were found to be in good agreement with measured values, demonstrating the importance of the tail in the diffusive transport of these viruses. Our calculations also show that inaccurate estimates of virus diffusion can lead to significant errors when predicting diffusive contributions to flocculation and to single collector efficiency in media filtration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.6b05323 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!