Purpose: Implanted fiducial markers are often used in radiotherapy to facilitate accurate visualization and localization of tumors. Typically, such markers are used to aid daily patient positioning and to verify the target's position during treatment. These markers can also provide a wealth of information regarding tumor motion, yet determining their accurate position in thousands of images is often prohibitive. This work introduces a novel, automated method for identifying fiducial markers in planar x-ray imaging.
Methods: In brief, the method was performed as follows. First, using processed CBCT projection images, an automated routine of reconstruction, forward-projection, tracking, and stabilization generated static templates of the marker cluster at arbitrary viewing angles. Breathing data were then incorporated into the same routine, resulting in dynamic templates dependent on both viewing angle and breathing motion. Finally, marker clusters were tracked using normalized cross correlations between templates (either static or dynamic) and CBCT projection images. To quantify the accuracy of the technique, a phantom study was performed and markers were manually tracked by two users to compare the automated technique against human measurements. Then, 75 pretreatment CBCT scans of 15 pancreatic cancer patients were analyzed to test the automated technique under real-life conditions, including several challenging scenarios for tracking fiducial markers (e.g., extraneous metallic objects, field-of-view limitations, and marker migration).
Results: In phantom and patient studies, for both static and dynamic templates, the method automatically tracked visible marker clusters in 100% of projection images. For scans in which a phantom exhibited 0D, 1D, and 3D motion, the automated technique showed median errors of 39 μm, 53 μm, and 93 μm, respectively. Human precision was worse in comparison; median interobserver differences for single markers and for the averaged coordinates of four markers were 183 μm and 120 μm, respectively. In patient scans, the method was robust against a number of confounding factors. Automated tracking was performed accurately despite the presence of radio-opaque, nonmarker objects (e.g., metallic stents, surgical clips) in five patients. This success was attributed to the distinct appearance of clusters as a whole compared to individual markers. Dynamic templates produced higher cross-correlation scores than static templates in patients whose fiducial marker clusters exhibited considerable deformation or rotation during the breathing cycle. For other patients, no significant difference was seen between dynamic and static templates. Additionally, transient differences in the cross-correlation score identified instances where markers disappeared from view.
Conclusions: A novel, automated method for producing dynamic templates of fiducial marker clusters has been developed. Production of these templates automatically provides measurements of tumor motion that occurred during the CBCT scan that was used to produce them. Additionally, using these templates with intrafractional images could potentially allow for more robust real-time target tracking in radiotherapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5538726 | PMC |
http://dx.doi.org/10.1002/mp.12073 | DOI Listing |
Nat Commun
January 2025
Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China.
Materials with full and fractional skyrmions are important for fundamental studies and can be applied as information carriers for applications in spintronics or skyrmionics. However, creation, direct optical observation and manipulation of different skyrmion textures remain challenging. Besides, how the transformation of skyrmion textures directs the dynamics of colloids is not well understood.
View Article and Find Full Text PDFPLoS Comput Biol
January 2025
Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China.
In eukaryotes, DNA achieves a highly compact structure primarily due to its winding around the histone cores. The nature wrapping of DNA around histone core form a 1.7 left-handed superhelical turns, contributing to negative supercoiling in chromatin.
View Article and Find Full Text PDFBrain Imaging Behav
January 2025
Key Laboratory of Adolescent Cyberpsychology and Behavior (Ministry of Education), Wuhan, China.
Bipolar disorder (BD) is a complex psychiatric condition marked by significant mood fluctuations that deeply affect quality of life. Understanding the neural mechanisms underlying BD is critical for improving diagnostic accuracy and developing more effective treatments. This study utilized resting-state functional magnetic resonance imaging (rs-fMRI) to investigate functional connectivity within the ventral and dorsal attention networks in 52 patients with BD and 51 healthy controls.
View Article and Find Full Text PDFClin Cosmet Investig Dent
January 2025
Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Bandung, West Java, Indonesia.
Purpose: Guided access cavity preparation (GACP) is an endodontic procedure utilizing stents, guide sleeves, or dynamic guides to facilitate the proper formation of access cavities. This paper aims to evaluate the significance of research on guided access cavity preparation in endodontic treatment concerning dentin preservation. In the context of dentin preservation, this paper provides a thorough scoping review of a variety of methodologies for evaluating the accuracy of guided access cavity preparation.
View Article and Find Full Text PDFComput Biol Med
January 2025
SCOPIA Research Group, University of the Balearic Islands, Dpt. of Mathematics and Computer Science, Crta. Valldemossa, Km 7.5, Palma, E-07122, Spain; Health Research Institute of the Balearic Islands (IdISBa), Palma, E-07122, Spain; Laboratory for Artificial Intelligence Applications at UIB (LAIA@UIB), Palma, E-07122, Spain; Artificial Intelligence Research Institute of the Balearic Islands (IAIB), Palma, E-07122, Spain. Electronic address:
Sickle cell disease causes erythrocytes to become sickle-shaped, affecting their movement in the bloodstream and reducing oxygen delivery. It has a high global prevalence and places a significant burden on healthcare systems, especially in resource-limited regions. Automated classification of sickle cells in blood images is crucial, allowing the specialist to reduce the effort required and avoid errors when quantifying the deformed cells and assessing the severity of a crisis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!