Comparison of the oxidative stability of linseed ( L.) oil by pressure differential scanning calorimetry and Rancimat measurements.

J Food Sci Technol

Department of Food Technology, Faculty of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska St. 166, 02-787 Warsaw, Poland.

Published: November 2016

The aim of this study was to compare the oxidative stability of linseed oil using the pressure differential scanning calorimetry (PDSC) and Rancimat methods, and to determine the kinetic parameters of linseed oil oxidation. Five cold pressed linseed oils were oxidized at different temperatures under PDSC (90-140 °C) and Rancimat (70-140 °C) test conditions. The oxidative stability of the linseed oils was calculated based on induction times (PDSCτ, Rancimat τ), the Arrhenius equation and activated complex theory, frequency factors (), the reaction rate coefficient () for all temperatures, activation energies (), numbers, activation enthalpies (∆), and activation entropies (∆). The PDSC method was more convenient for the determination of the induction time of linseed oils than the Rancimat method. During oxidation measurement by Rancimat method, the linseed oil polymerized, which affected the measurements. The reaction rate coefficient increased with rising temperature during measurement by both methods. The activation energy values of linseed oil oxidation using the PDSC and Rancimat methods ranged from 93.14 to 94.53 and 74.03 to 77.76 kJ mol, respectively. The , ∆, and ∆ values for the analyzed linseed oils were between 2.11-2.13, 90.54-91.30 kJ mol, -33.20 to -30.90 J mol K calculated by PDSC measurements, and 2.23-2.32, 71.03-74.76, -59.42 to -49.08 J mol K by Rancimat measurements, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5156642PMC
http://dx.doi.org/10.1007/s13197-016-2398-2DOI Listing

Publication Analysis

Top Keywords

linseed oil
20
linseed oils
16
oxidative stability
12
stability linseed
12
linseed
9
oil pressure
8
pressure differential
8
differential scanning
8
scanning calorimetry
8
rancimat
8

Similar Publications

This research follows the principles of circular economy through the zero waste concept and cascade approach performed in two steps. Our paper focuses on the first step and explores the characteristics of developed biocomposite materials made from a biodegradable poly(lactic acid) polymer (PLA) reinforced with natural fibers isolated from the second generation of biomass (agricultural biomass and weeds). Two plants, L.

View Article and Find Full Text PDF

Modulatory effect of Echium plantagineum oil on the n-3 LC-PUFA biosynthetic capacity of chicken (Gallus gallus).

Poult Sci

January 2025

Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna. Avenida Astrofísico Francisco Sánchez s/n, 38206 La Laguna, Tenerife, Spain.

Poultry can be a sustainable source of eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) through the bioconversion of dietary alpha-linolenic acid (ALA, 18:3n-3). However, this process is currently limited by the high n-6/n-3 ratio in poultry diets affecting the competition between n-6 and n-3 fatty acids (FA) for the same biosynthetic enzymes, and the rate-limiting Δ6 desaturase which act at both, the first and final steps of DHA synthesis pathway. Echium plantagineum oil (EO) is an unusual source of stearidonic acid (SDA, 18:4n-3) which bypasses the first Δ6 desaturase step potentially increasing n-3 long-chain polyunsaturated fatty acids (LC-PUFA) synthesis.

View Article and Find Full Text PDF

The study aimed to evaluate the effect of ultrasound maceration of cold-pressed oils with freeze-dried mullein flowers (Verbascum thapsus L.) on their oxidative stability and chemical composition. After the maceration process, oils' were subjected to their oxidative stability (80-120 °C) and their chemical composition, Moreover, oils kinetics parameters were calculated.

View Article and Find Full Text PDF

The effects of three dietary oils (rapeseed oil, camellia oil, linseed oil) with different fatty acid compositions on the growth performance, digestion and gut microbiota of rats after 8 weeks of feeding were studied. The serum metabolic index and liver histomorphology of rats were measured using an automatic biochemical analyzer and light microscope. Furthermore, 16S rDNA amplicon sequencing technology was used to analyze the gut microbiota.

View Article and Find Full Text PDF

The aim of this study was to compare the functional properties of linseed oil powders made of three types of wall material (OSA starch + maltodextrin, OSA starch + nutriose, and OSA starch + inulin) and two types of emulsion phases (micro- and nanoemulsion). For these independent variables, the properties of the prepared emulsions (flow curves and viscosity) and the resulting powders (encapsulation efficiency, particle size distribution, water activity, bulk and tapped density, Carr's index, color parameters, and thermal stability) were determined. The results showed that emulsion viscosity and most powder properties were affected by the emulsion type.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!